Skip to main content

Time Reversal Violation in the YBF Molecule

  • Chapter
New Directions in Atomic Physics

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 274 Accesses

Abstract

Quantum electrodynamics is astonishingly accurate in its predictions of atomic and molecular phenomena and is the most successful physical theory to date. The standard model of elementary particle physics incorporates the additional effects of weak and strong interactions by generalizing the ideas of QED to make a quantum field theory of these three fundamental forces. Although the standard model has been extremely successful at explaining both particle physics and physics at the low energy scale of atoms and molecules, there is great interest in extensions to the standard model that would, for example, predict its arbitrary parameters such as the particle masses. [1] It may seem surprising that measurement of a simple molecular system could probe physics beyond the standard model, but that is the strategy our group at Sussex is pursuing; we are measuring the electric dipole moment (edm) of the electron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Kane, Physics Today 50, 40 (1997); P. Kalmus, Physics World 11, 26 (1998).

    Article  Google Scholar 

  2. W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991), §III.

    Article  ADS  Google Scholar 

  3. S. M. Barr, Int. J. Mod. Phys. A 8 209 (1993).

    Article  ADS  Google Scholar 

  4. For example, the search for the Higgs boson is a primary motivation for the construction of the LHC at CERN, see eg. Physics Today 50, 58 (1997).

    Google Scholar 

  5. E. D. Commins, S. B. Ross, D. DeMille and B. C. Regan, Phys. Rev. A50, 2960 (1994).

    ADS  Google Scholar 

  6. S. Dimopoulos and L.J. Hall, Phys. Lett. B344, 185 (1995).

    ADS  Google Scholar 

  7. L. I. Schiff, Phys. Rev. 132, 2194 (1963); E. A. Hinds, Physica Scripta T70, 34 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. G. H. Sandars, Phys. Lett. 14 194 (1965).

    Article  ADS  Google Scholar 

  9. S. A. Murthy, D. Krause Jr., Z. L. Li and L. R. Hunter, Phys. Rev. Lett. 63, 965 (1989).

    Article  ADS  Google Scholar 

  10. S. Rochester, D. Budker, D. DeMille, M. Zolotorev (LBNL preprint #42067)

    Google Scholar 

  11. P. G. H. Sandars, Phys. Rev. Lett. 19, 1396 (1967); The use of a polar molecule to search for de is implicit in this paper. The first explicit statement of the idea appears to be in O. P. Sushkov and V. V. Flambaum, Zh. Eksp. Theo. Fiz 75, 1208 (1978) [Sov. Phys. JETP 48, 608 (1978)].

    Article  ADS  Google Scholar 

  12. B. E. Sauer, Jun Wang and E. A. Hinds, Phys. Rev. Lett. 74 1554 (1995); B. E. Sauer, Jun Wang and E. A. Hinds, J. Chem. Phys. 105 7412 (1996).

    Article  ADS  Google Scholar 

  13. M. G. Kozlov, V. F. Ezhov, Phys. Rev. A 49, 4502 (1994); A. V. Titov, N. S. Mosyagin, V. F. Ezhov, Phys. Rev. Lett. 77, 5346 (1996); M. G. Kozlov, J. Phys. B: At. Mol. Opt. Phys. 30, L607 (1997); H. M. Quiney, H. Skaane, I. P. Grant, J. Phys. B: At. Mol. Opt. Phys. 31, L85 (1998); F. A. Parpia, J. Phys. B: At. Mol. Opt. Phys. 31, 1409 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sauer, B.E., Cahn, S.B., Redgrave, G.D., Hinds, E.A. (1999). Time Reversal Violation in the YBF Molecule. In: Whelan, C.T., Dreizler, R.M., Macek, J.H., Walters, H.R.J. (eds) New Directions in Atomic Physics. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4721-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4721-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7139-7

  • Online ISBN: 978-1-4615-4721-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics