Skip to main content

Interaction between Nitric Oxide and Thromboxane A2 in the Regulation of the Resting Cerebrovascular Tone

  • Chapter
Book cover Oxygen Transport to Tissue XXI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 471))

Abstract

Nitric oxide (NO) plays an important role in the regulation of the cerebral blood flow (CBF) (for review see: Faraci and Heistad, 1998). Inhibition of the L-arginine—NO pathway results in cerebral vasoconstriction and reduction of the CBF, indicating that the basal release of NO provides a resting relaxant tone in the cerebrovascular bed (for review see: Iadecola et al., 1994). This effect of basal NO production has generally been regarded as a direct relaxant action on the smooth muscle. The possibility that NO may regulate the resting cerebrovascular tone by modulation of the prostanoid synthesis has not been investigated to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benyó Z, Görlach C, and Wahl M (1997) Neuronal nitric oxide synthase is involved in agonist-induced but not in basal nitric oxide release in isolated rat basilar arteries. J Cereb Blood Flow Metab 17(Suppl 1):S345.

    Google Scholar 

  • Benyó Z, Görlach C, and Wahl M (1998a) Involvement of thromboxane A2 in the mediation of the contractile effect induced by inhibition of nitric oxide synthesis in isolated rat middle cerebral arteries. J Cereb Blood Flow Metab 17:616–618.

    Article  Google Scholar 

  • Benyó Z, Görlach C, and Wahl M (1998b) Role of nitric oxide and thromboxane in the maintenance of cere-brovascular tone. Kidney Int 54(Suppl 67):S218–S220.

    Article  Google Scholar 

  • Bredt DS, Hwang PM, and Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  PubMed  CAS  Google Scholar 

  • De Clerck F, Beetens J, de Chaffoy de Courcelles D, Freyne E, and Janssen PAJ (1989) R 68 070: Thromboxane A2 synthase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule—I. Biochemical profile in vitro. Thromb Haemostas 61:35–42.

    Google Scholar 

  • Descombes J-J, Devys M, Laubie M, and Verbeuren TJ (1993) Endothelial thromboxane production plays a role in the contraction caused by 5-hydroxytryptamine in rat basilar arteries. Eur J Pharmacol 243:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Faraci F and Heistad DD (1998) Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev 78:53–97.

    PubMed  CAS  Google Scholar 

  • Gorelova E, Loesch A, Bodin P, Chadwick L, Hamlyn PJ, and Burnstock G (1996) Localisation of immunore-active factor VIII, nitric oxide synthase, substance P, endothelin-1 and 5-hydroxytriptamine in human postmortem middle cerebral artery. J Anat 188:97–107.

    PubMed  CAS  Google Scholar 

  • Görlach C and Wahl M (1996) Bradykinin dilates rat middle cerebral artery and its large branches via endothelial B2 receptors and release of nitric oxide. Peptides 17:1373–1378.

    Article  PubMed  Google Scholar 

  • Hellyer PW, Johnson LW, and Olson NC (1997) Effect of NG-nitro-L-arginine-methyl-ester on cardiopulmonary function and biosynthesis of cyclooxygenase products during porcine endotoxemia. Crit Care Med 25:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Pelligrino DA, Moskowitz MA, and Lassen NA (1994) Nitric oxide synthase inhibition and cere-brovascular regulation. J Cereb Blood Flow Metab 14:175–192.

    Article  PubMed  CAS  Google Scholar 

  • Kelly PAT, Ritchie IM, and Arbuthnott GW (1995) Inhibition of neuronal nitric oxide synthase by 7-niroin-dazole: effects upon local cerebral blood flow and glucose use in the rat. J Cereb Blood Flow Metab 15:766–773.

    Article  PubMed  CAS  Google Scholar 

  • Kovách AGB, Lohinai Z, Marczis J, Balla I, Dawson TM, and Snyder SH (1994) The effect of hemorrhagic hypotension and retransfusion and 7-nitro-indazole on rCBF, NOS catalytic activity, and cortical NO content in the cat. Ann NY Acad Sci 738:348–368.

    Article  PubMed  Google Scholar 

  • Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, and Snyder SH (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79.

    Article  PubMed  CAS  Google Scholar 

  • Salvemini D (1997) Regulation of cyclooxygenase enzymes by nitric oxide. Cell Mol Life Sci 53:576–582.

    Article  PubMed  CAS  Google Scholar 

  • Silva MT, Rose S, Hindmarsh JG, Aislaitner G, Gorrod JW, Moore PK, Jenner P, and Marsden CD (1995) Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br J Pharmacol 114:257–258.

    Article  PubMed  CAS  Google Scholar 

  • Spatz M, Kawai N, Merkel N, Bembry J, and McCarron RM (1997) Functional properties of cultured endothelial cells derived from large microvessels of human brain. Am J Physiol 272:C231–C239.

    PubMed  CAS  Google Scholar 

  • Stadler J, Harbrecht BG, Di Silvio M, Curran RD, Jordan ML, Simmons RL, and Billiar TR (1993) Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol 53:165–172.

    PubMed  CAS  Google Scholar 

  • Wang G-R, Zhu Y, Halushka PV, Lincoln TM, and Mendelsohn ME (1998) Mechanism of platelet inhibition by nitric oxide: In vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 95:4888–4893.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Pelligrino DA, Baughman VL, Koenig HM, Albrecht RF (1995) The role of neuronal nitric oxide synthase in regulation of cerebral blood flow in normocapnia and hypercapnia in rats. J Cereb Blood Flow Metab 15:774–778.

    Article  PubMed  CAS  Google Scholar 

  • Zagvazdin Y, Sancesario G, Wang YX, Share L, Fitzgerald ME, and Reiner A (1996) Evidence from its cardiovascular effects that 7-nitroindazole may inhibit endothelial nitric oxide synthase in vivo. Eur J Pharmacol 303:61–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benyó, Z., Görlach, C., Wahl, M. (1999). Interaction between Nitric Oxide and Thromboxane A2 in the Regulation of the Resting Cerebrovascular Tone. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics