Skip to main content

Mechanism(s) of Mitochondrial Hyperoxidation after Global Cerebral Ischemia

  • Chapter
Oxygen Transport to Tissue XXI

Abstract

In brain and other tissues, there has been a recent re-emphasis on the role of mitochondria in the cascade of events producing cell injury and death following anoxia/ischemia (e.g., Abe et al., 1995; Ankarcrona et al., 1995; Saris and Eriksson, 1995; Kluck et al., 1997; Yang et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, and Itoyama Y (1995) Ischemic delayed neuronal death: A mitochondrial hypothesis. Stroke 26:1478–1489.

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, and Nicotera P (1995) Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P and Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. J Bioenerg Biomembrane 28(2): 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Bogaert YE, Rosenthal RE, and Fiskum G (1994) Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radic Biol Med 16(6):811–820.

    Article  PubMed  CAS  Google Scholar 

  • Chance B and Williams G (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134.

    CAS  Google Scholar 

  • Chernyak BV and Bernardi P (1996) The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem 238(3):623–630.

    Article  PubMed  CAS  Google Scholar 

  • Feng ZC, Sick TJ, and Rosenthal M (1998) Oxygen sensitivity of mitochondrial redox status and evoked potential recovery early during reperfusion in post-ischemic rat brain. Resuscitation 37:33–41.

    Article  PubMed  CAS  Google Scholar 

  • Fiskum G, Auldrige ME, Murphy AN, and Rosenthal RE (1997) Cardiac arrest (CA) damages the ability of brain toaccumulate Ca+2 and potentiates release of cytochrome c. Society for Neuroscience Abtracts 23(1):547.

    Google Scholar 

  • Hall ED and Braughler JM (1993) Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 71:81–105.

    PubMed  CAS  Google Scholar 

  • Kluck RM, Bossywetzel E, Green DR, and Newmeyer DD (1997) The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275(5303): 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA (1989) Oxygen radicals in CNS damage. Chem Biol Interact 72(3):229–255.

    Article  PubMed  CAS  Google Scholar 

  • Mayevsky A, Friedli CM, and Reivich M (1985) Metabolic, ionic, and electrical responses of gerbil brain to ischemia. Am J Physiol 248(1 Pt 2):R99–R107.

    PubMed  CAS  Google Scholar 

  • Ouyang YB, Kuroda S, Kristian T, and Siesjoe BK (1997) Release of mitochondrial aspartate aminotransferase (mAST) following transient focal cerebral ischemia suggests the opening of a mitochondrial permeability transition pore. Neurosci Res Commun 20(3): 167–173.

    Article  CAS  Google Scholar 

  • Pérez-Pinzón MA, Mumford PL, Rosenthal M, and Sick TJ (1997a) Antioxidants, mitochondrial hyperoxidation and electrical activity recovery after anoxia in hippocampal slices. Brain Res 754:163–170.

    Article  PubMed  Google Scholar 

  • Pérez-Pinzón MA, Mumford PL, Carranza V, and Sick TJ (1997b) Calcium influx from the extracellular space promotes NADH hyperoxidation and electrical dysfunction after anoxia in hippocampal slices. J Cereb Blood Flow Metabol 18:215–221.

    Google Scholar 

  • Pérez-Pinzón MA, Mumford PL, and Sick TJ (1998) Prolonged anoxic depolarization exacerbates NADH hyperoxidation and promotes poor electrical recovery after anoxia in hippocampal slices. Brain Res 786:165–170.

    Article  PubMed  Google Scholar 

  • Pérez-Pinzón MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M, and Sick TJ (1999) Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow and Metabol 19(l):39–43.

    Article  Google Scholar 

  • Rosenthal M, Feng ZC, Raffin CN, Harrison M, and Sick TJ (1995) Mitochondrial hyperoxidation signals residual intracellular dysfunction after global ischemia in rat neocortex. J Cereb Blood Flow Metab 15(4):655–665.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M, Mumford PL, Sick TJ, and Pérez-Pinzón MA (1997) Mitochondrial hyperoxidation after cerebral anoxia/ischemia: Epiphenomenon or precursor of residual damage? Adv Exp Med Biol 428: 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M and Sick TJ (1988) Measurement of metabolic activity associated with ion shifts. Neuromethods: The neuronal microenvironment. New Jersey, The Humana Press Inc 187–245.

    Chapter  Google Scholar 

  • Saris N and Eriksson KO (1995) Mitochondrial dysfunction in ischaemia-reperfusion. Ada Anaesthesiol Scand 39(Suppl. 107): 171–176.

    Article  Google Scholar 

  • Sims NR and Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. Journal of Neuro chemistry 49(5): 1367–1374.

    CAS  Google Scholar 

  • Tanaka K, Dora E, Greenberg JH, and Reivich M (1986) Cerebral glucose metabolism during the recovery period after ischemia-its relationship to NADH-fluorescence, blood flow, EcoG and histology. Stroke 17(5):994–1004.

    Article  PubMed  CAS  Google Scholar 

  • Vlessis AA, Widener LL, and Bartos D (1990) Effect of peroxide, sodium, and calcium on brain mitochondrial respiration in vitro: potential role in cerebral ischemia and reperfusion. J Neurochem 54(4): 1412–1418.

    Article  PubMed  CAS  Google Scholar 

  • Welsh FA, Marcy VR, and Sims RE (1991) NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain. J Cereb Blood Flow Metab 11(3):459–465.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TI, Jones DP, and Wang XD (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275(5303): 1129–1132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pérez-Pinzón, M.A., Sick, T.J., Rosenthal, M. (1999). Mechanism(s) of Mitochondrial Hyperoxidation after Global Cerebral Ischemia. In: Eke, A., Delpy, D.T. (eds) Oxygen Transport to Tissue XXI. Advances in Experimental Medicine and Biology, vol 471. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4717-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4717-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7137-3

  • Online ISBN: 978-1-4615-4717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics