Skip to main content

Frontiers in Neuroscience

Hypoxia and the Blood-Brain Barrier: Introduction

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 474))

Abstract

It is now generally accepted that acute mountain sickness (AMS) is caused by a mild form of high-altitude cerebral edema (HACE). In susceptible individuals AMS may progress to a lethal form of HACE and/or high-altitude pulmonary edema (3). Two hypotheses have been promulgated to account for HACE: the vasogenic edema hypothesis and the cytotoxic edema hypothesis (3,4). Since cerebral energetics are unchanged during AMS-HACE in an experimental sheep model (7), evidence favors the view that HACE is vasogenic in nature, although cytotoxic edema has not been ruled out specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johannsson, B.B. Hypertension and the blood-brain barrier. In: Implications of the blood-brain barrier and its manipulation. Edited by E.A Neuwelt. New York: Saunders, 1989, 389–410.

    Chapter  Google Scholar 

  2. Joo, F. Brain microvascular cyclic nucleotides and protein phosphorylation. In: The Blood-Brain Barrier, Edited by W.M Pardridge, New York: Raven Press, 1993, Chap 13, p 267–302.

    Google Scholar 

  3. Krasney, J.A. A neurogenic basis for acute altitude illness. Med Sci. Sports Exercise. 26:195–208, 1994.

    Article  CAS  Google Scholar 

  4. Krasney, J.A. Cerebral hemodynamics and high altitude cerebral edema. In. Hypoxia: Women at Altitude, Edited by C.S Houston, G Coates. Burlington, Vt: Queen City Printers, Chap 30: 1997, p 254–267.

    Google Scholar 

  5. Mayhan, W.G. and D.D. Heistad, Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 59:216–220, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Plateel, M., M-P. Dehouck, G. Torpier, R. Cecchelli, and E. Tessier. Hypoxia increases the susceptibility to oxidant stress and the permeability of the blood-brain barrier endothelial cell monolayer. J. Neurochem. 65:2138–2145, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, S-P., G.W. Bergo, E. Krasney and J.A. Krasney. Cerebral pressure-flow and metabolic responses to sustained hypoxia: Effect of CO2. J. Appl. Physiol. 76:303–313,1994.

    PubMed  CAS  Google Scholar 

  8. Xu, F., and J.W. Severinghaus. Rat brain VEGF expression in alveolar hypoxia: possible role in high-altitude cerebral edema. J. Appl. Physiol. 85:53–57, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krasney, J.A. (1999). Frontiers in Neuroscience. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 474. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4711-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4711-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7134-2

  • Online ISBN: 978-1-4615-4711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics