Skip to main content

Tryptophans in Membrane Proteins

X-Ray Crystallographic Analyses

  • Chapter
Tryptophan, Serotonin, and Melatonin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 467))

Abstract

While tryptophans are generally found in low abundance in soluble proteins, in many integral membrane proteins they comprise a significantly higher proportion of the amino acid composition. Now that crystal structures are available for a number of membrane proteins, it has been possible to examine the distribution and disposition of the tryptophans within these structures. The tryptophan locations with respect to the lipid bilayer (along the direction normal to the membrane surface) are strikingly non-uniform in nearly all of the membrane proteins examined. They tend to cluster at the interface between the polar head group region and the hydrophobic interior, in a relatively uniform layer just below the surface. In many cases, their distributions with respect to the extra- and intra-cellular surfaces tend to be asymmetric. These observations provide evidence for possible structural roles for tryptophans in transmembrane sheets and helices, where they may play a part in the stabilization of the transmembrane segments and perhaps in the orientation and bilayer insertion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D.J. and Leo, A.J., 1987, Extension of the fragment method to calculate amino-acid zwitterion and side-chain partition-coefficients, Proteins: Structure, Function and Genetics 2:130–152.

    Article  CAS  Google Scholar 

  • Bairoch, A., 1997, Release Notes for SWISS-PROT release 35.

    Google Scholar 

  • Bairoch, A. and Apweiler, R., 1997, The SWISS-PROT protein sequence data bank and its supplement TrEMBL, Nucleic Acids Research 25:31–36.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., and Tasmui, M., 1977, The Protein Data Bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Bull, H.B. and Breese, K., 1974, Surface tension of amino acid solutions: A hydrophobicity scale of the amino acid residues, Arch. Biochem. Biophys. 161:665–670.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Guy, H.R., 1985, Amino-acid side-chain partition energies and distribution of residues in soluble-proteins, Biophysical J. 47:61–70.

    Article  CAS  Google Scholar 

  • Dayhoff, M.O., 1978, Atlas of Protein Sequence and Structure, Vol, 5, suppl 3, National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • Deisenhofer, J., Epp, O., Sinning, I., and Michel, H., 1995, Crystallographic refinement at 2.3-angstrom resolution and refined model of the photosynthetic reaction-center from Rhodopseudomonas-viridis, J. Mol. Biol. 246:429–457.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A.L., Gulbis, J.M., Cohen, S.L., Chait, B.T., and MacKinnon, R., 1998, The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science 280:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Fauchere, J.L. and Pliska, V.E., 1983, Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of n-acetyl-amino-acid amides, Eur. J. Med. Chem. 18:369–375.

    CAS  Google Scholar 

  • Forst, D., Weite, W., Wacker, T., and Diederichs, K., 1998, Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose, Nature Struct. Biol. 5:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, R., 1974, Amino acid difference formula to help explain protein evolution, Science 185:862–864.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H., 1990, Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy, J. Mol. Biol. 13:899–929.

    Article  Google Scholar 

  • Hopp, T.P. and Woods, K.R., 1981, Prediction of protein antigenic determinants from amino-acid-sequences, Proc. Nat. Acad. Sci. (USA) 78:3824–3828.

    Article  PubMed  CAS  Google Scholar 

  • Janin, J., 1979, Surface and inside volumes in globular proteins, Nature 277:491–492.

    Article  PubMed  CAS  Google Scholar 

  • Koepke, J., Hu, X.C., Muenke, C., Schulten, K., and Michel, H., 1996, The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum, Structure 4:581–597.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J. and Doolittle, R.F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Manavalan, P. and Ponnuswamy, P.K., 1978, Hydrophobic character of amino acid residues in globular proteins, Nature 275:673–674.

    Article  PubMed  CAS  Google Scholar 

  • McCaldon, P. and Argos, P., 1988, Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide-sequences, Proteins: Structure, Function and Genetics 4:99–122.

    Article  CAS  Google Scholar 

  • Miyazawa, S. and Jernigen, R.L., 1985, Estimation of effective interresidue contact energies from protein crystal-structures—quasi-chemical approximation Macromolecules 18:534–552.

    Article  CAS  Google Scholar 

  • Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H., 1997, Structure at 2.7 angstrom resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody F-V fragment, Proc. Nat. Acad. Sci.x (USA) 94:10547–10553.

    Article  CAS  Google Scholar 

  • Prince, S.M., Papiz, M.Z., Freer, A.A., McDermott, G., Hawthornthwaite-Lawless, A.M., Cogdell, R.J., and Isaacs, N.W., 1997, Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions, J. Mol. Biol. 268:412–423.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, T., Keller, T.A., Wang, Y.F., and Rosenbusch, J.P., 1995, Structural basis for sugar translocation through maltoporin channels at 3.1-angstrom resolution, Science 267:512–514.

    Article  PubMed  CAS  Google Scholar 

  • Sayle, R. and Milnerwhite, E.J., 1995, RASMOL—Biomolecular graphics for all, Trends in Biochemical Sci. 20:374–376.

    Article  CAS  Google Scholar 

  • Song, L.Z., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., and Gouaux, J.E., 1996, Structure of staphy-lococcal alpha-hemolysin, a heptameric transmembrane pore, Science 274:1859–1866.

    Article  PubMed  CAS  Google Scholar 

  • Sweet, R.M. and Eisenberg, D., 1983, Correlation of sequence hydrophobicities measures similarity in 3-dimensional protein-structure, J. Mol. Biol. 171:479–488.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1996, The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 angstrom Science 272:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, K.J., Honegger, A., Stotzel, R.P., and Hughes, G.J., 1981, The behavior of peptides on reverse-phase supports during high-pressure liquid-chromatography, Biochemical J. 199:31–41.

    CAS  Google Scholar 

  • Zimmerman, J.M., Eliezer, N., and Simha, R., 1968, The characterisation of amino acid sequences in proteins by statistical methods, J. Theor. Biol. 21:170–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wallace, B.A., Janes, R.W. (1999). Tryptophans in Membrane Proteins. In: Huether, G., Kochen, W., Simat, T.J., Steinhart, H. (eds) Tryptophan, Serotonin, and Melatonin. Advances in Experimental Medicine and Biology, vol 467. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4709-9_101

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4709-9_101

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7133-5

  • Online ISBN: 978-1-4615-4709-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics