Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 33))

  • 645 Accesses

Abstract

Green plants produce a variety of secondary metabolites which play important roles in complex interactions among living organisms, such as plant-plant, plant-microorganism, and plant-insect, in the natural environment. Molisch (1937) coined the term allelopathy and defined it as all effects that are either directly or indirectly the results of chemicals transferred from one plant to another plant.1 Plants include algae, fungi, and the various microorganisms as well as higher plants. Both Waller (1989)2 and Rizvi and Rizvi (1992)3 included plant-insect and plant-higher animal interactions in the terms allelopathy and allelo-chemicals. Lovett has been articulate in pointing out that many of the same plant-produced chemicals that affect associated plants also influence other organisms, and he has proposed expanding the context of allelopathy.4,5 We proposed the new term “plant ecochemicals.”6 Plant ecochemicals are those originating from plants that may play important roles in complex interactions between plants and other plants, microorganisms, or animals. In this chapter, some plant ecochemicals we have worked on are discussed from the viewpoint of plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MOLISCH, H. 1937. Die Einfluss einer Pflanze auf die Andere—Allelopathie, Gustav Fischer, Jena.

    Google Scholar 

  2. WALLER, G.R. (ed.), 1989. Allelochemicals: Role in Agriculture and Forestry, ACS Symposium Series 330, American Chemical Society, Washington, DC.

    Google Scholar 

  3. RIZVI, S.J.H., RIZVI, V (eds.), 1992. Allelopathy: Basic and Applied Aspects, Chapman & Hall, London.

    Google Scholar 

  4. LOVETT, J.V 1990. Chemicals in crop protection: Is there an alternative? In: Alternatives to the Chemical Control of Weeds. (C. Bassett, L.S. Whitehouse, and J.A. Zabkiewizz, eds.), Ministry of Forestry, FRI Bulletin 155, Rotorua, New Zealand, pp. 57–65.

    Google Scholar 

  5. LOVETT, J.V, RYUNTYU, M. 1992. Allelopathy: Broadening the context. In: Allelopathy: Basic and Applied Aspects. (S.J.H. Rizvi and V. Rizvi, eds.), Chapman & Hall, London, pp. 11–19.

    Google Scholar 

  6. MIZUTANI, J. 1991. Plant ecochemicals. J. Pesticide Sci. (in Japanese) 16: 679–686.

    Article  CAS  Google Scholar 

  7. KAWABATA, J., TAHARA, S., MIZUTANI, J., FURUSAKI, A., HASHI- BA, MATSUMOTO, T. 1979. Shizukanolides, two sesquiterpenoids from Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem., 42: 885–887.

    Article  Google Scholar 

  8. TAKEDA, K., ISHII, H., TOZYO, T., MINATO, H. 1969. Components of the root of Lindera strychnifolia Vill. Part XVI. Isolation of lindenene showing a new fundamental sesquiterpene skeleton, and its correlation with lindenene. J. Chem. Soc, (C) 1969: 1920–1921.

    Google Scholar 

  9. UCHIDA, M., KUSANO, G., KONDO, Y., NOZOE, S., TAKEMOTO, T. 1978. Two new sesquiterpenoids from Chloranthus glaber Makino. Heterocycles 9: 139–144.

    Article  CAS  Google Scholar 

  10. KAWABATA, J., TAHARA, S., MIZUTANI, J. 1981. Isolation and structure elucidation of four sesquiterpenes from Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem. 45: 1447–1453.

    Article  CAS  Google Scholar 

  11. KAWABATA, J., FUKUSHI, Y., TAHARA, S., MIZUTANI, J. 1984. Structures of novel sesquiterpene alcohols from Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem. 48: 713–717.

    Article  CAS  Google Scholar 

  12. TAHARA, S., FUKUSHI, Y., KAWABATA, J., MIZUTANI, J. 1981. Linde- nanolides in the root of Chloranthus japonicus (Chloranthaceae). Agric. Biol. Chem. 45: 1511–1512.

    Article  CAS  Google Scholar 

  13. KAWABATA, J., MIZUTANI, J. 1989. Shizukanolides D, E and F, novel lindenanolides from Chloranthus spp. (Chloranthaceae). Agric. Biol. Chem. 53: 203–207.

    Article  CAS  Google Scholar 

  14. KAWABATA, J., FUKUSHI, Y., TAHARA, S., MIZUTANI, J. 1990. Shizukaol A, a sesquiterpene dimer from Chloranthus japanicus. Phytochemistry 29: 2332–2334.

    Article  CAS  Google Scholar 

  15. KAWABATA, J., FUKUSHI, E., MIZUTANI, J. 1995. Sesquiterpene dimers from Chloranthus japonicus. Phytochemistry 39: 121–125.

    Article  CAS  Google Scholar 

  16. KAWABATA, J., FUKUSHI, E., MIZUTANI, J. 1998. Sesquiterpene dimer and trimer from Chloranthus japonicus. Phytochemistry 47: 231–235.

    Article  CAS  Google Scholar 

  17. KAWABATA, J., FUKUSHI, Y., TAHARA, S., MIZUTANI, J. 1985. Structures of novel sesquiterpene ketones from Chloranthus serratus (Chloranthaceae). Agric. Biol. Chem. 49: 1479–1485.

    Article  CAS  Google Scholar 

  18. MARADUFU, A. 1982. Furanosesquiterpenoids of Commiphora erythraea and C. myrrh. Phytochemistry 21: 677–680.

    Article  CAS  Google Scholar 

  19. KAWABATA, J., MIZUTANI, J. 1992. Dimeric sesquiterpenoid esters from Chloranthus serratus. Phytochemistry 31: 1293–1296.

    Article  CAS  Google Scholar 

  20. FUKUSHI, E., KAWABATA, J., MIZUTANI, J. 1995. Discrimination of two methylene groups in non-symmetric succinate esters in sesquiterpene dimers by heteronuclear 13C1H NOE spectroscopy. Magn. Reson. Chem. 33: 909–912.

    Article  CAS  Google Scholar 

  21. KAWABATA, J., FUKUSHI, E., MIZUTANI, J. 1993. Symmetric sesquiterpene dimer from Chloranthus serratus. Phytochemistry 32: 1347–1349.

    Article  CAS  Google Scholar 

  22. OIKAWA, H., SUZUKI, Y., NAYA, A., KATAYAMA, K., ICHIHARA, A. 1994. First direct evidence in biological Diels-Alder reaction of incorporation of diene-dienophile precursors in the biosynthesis of solanapyrones. J. Am. Chem. Soc. 116: 3605–3606.

    Article  CAS  Google Scholar 

  23. KAWABATA, J., MIZUTANI, J. 1988. Distribution of lindenanolides in the Chloranthaceae. Agric. Biol. Chem. 52: 2965–2966.

    Article  CAS  Google Scholar 

  24. SUZUKI, K., SHIMIZU, T., KAWABATA, J., MIZUTANI, J. 1987. New 3,5,4’-trihydroxystilbene (resveratrol) oligomers from Carex fedia Nees var. miyabei (Franchet) T. Koyama (Cyperaceae). Agric. Biol. Chem. 51: 1003–1008.

    Article  CAS  Google Scholar 

  25. LANGCAKE, P., PRYCE, R.J. 1977. A new class of phytoalexins from grapevines. Experientia 33: 151–152.

    Article  PubMed  CAS  Google Scholar 

  26. KAWABATA, J., MISHIMA, M., KURIHARA, H., MIZUTANI, J. 1995. Stereochemistry of two tetrastilbenes from Carex species. Phytochemistry 40: 1507–1510.

    Article  CAS  Google Scholar 

  27. KAWABATA, J., ICHIKAWA, S., KURIHARA, H., MIZUTANI, J. 1989. Kobophenol A, a unique tetrastilbene from Carex kobomugi Ohwi (Cyperaceae). Tetrahedron Lett. 30: 3785–3788.

    Article  CAS  Google Scholar 

  28. KURIHARA, H., KAWABATA, J., ICHIKAWA, S., MISHIMA, M., MIZUTANI, J. 1991. Oligostilbenes from Carex kobomugi. Phytochemistry 30: 649–653.

    Article  CAS  Google Scholar 

  29. KAWABATA, J., MISHIMA, M., KURIHARA, H., MIZUTANI, J. 1991. Kobophenol B, a tetrastilbene from Carex pumila. Phytochemistry 30: 645–647.

    Article  CAS  Google Scholar 

  30. LINS, A.P., YOSHIDA, M., GOTTLIEB, O.R., GOTTLIEB, H.E., KUBITZKI, K. 1986. Plant chemosystematics and phytogeny. Part XXXII. Gnetins in Welwitschia. Bull. Soc. Chim. Belg. 95: 737–748.

    Article  CAS  Google Scholar 

  31. KURIHARA, H., KAWABATA, J., ICHIKAWA, S., MIZUTANI, J. 1990. (-)-ε-Viniferin and related oligostilbenes from Carex pumila Thunb. (Cyperaceae). Agric. Biol. Chem. 54: 1097–1099.

    Article  Google Scholar 

  32. NAKAJIMA, K., TAGUCHI, H., ENDO, T., YOSIOKA, I. 1978. The constituents of Scirpus fluviatilis (Torr.) A. Gray. I. The structures of two new hydroxystilbene dimers, scirpusin A and B. Chem. Pharm. Bull. 26: 3050–3057.

    Article  CAS  Google Scholar 

  33. KAWABATA, J., FUKUSHI, E., HARA, M., MIZUTANI, J. 1992. Detection of connectivity between equivalent carbons in a C 2 molecule using isotopomeric asymmetry: Identification of hopeaphenol in Carex pumila. Magn. Reson. Chem. 30: 6–10.

    Article  CAS  Google Scholar 

  34. KAWABATA, J., FUKUSHI, E., MIZUTANI, J. 1992. 2D l3C-coupled HMQC-ROESY: A probe for NOEs between equivalent protons. J. Am. Chem. Soc. 114: 1115–1117.

    Article  Google Scholar 

  35. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1989. Antimicrobial sesquiterpene from damaged Rosa rugosa leaves. Phytochemistry 28: 425–430.

    Article  CAS  Google Scholar 

  36. HARADA, N., IWABUCHI, J., YOKOTA, Y., UDA, H., NAKANISHI, K. 1981. A chiroptical method for determining the absolute configuration of allylic alcohols. J. Am. Chem. Soc. 103: 5590–5591.

    Article  CAS  Google Scholar 

  37. HASHIDOKO, Y., IWAYA, N., TAHARA, S., MIZUTANI, J. 1989. Absolute configuration of rugosal A, an endoperoxy carotanoid sesquiterpene. Agric. Biol. Chem. 53: 2505–2507.

    Article  CAS  Google Scholar 

  38. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1990. Carota-1,4-dienaldehyde, a sesquiterpene from Rosa rugosa. Phytochemistry 29: 867–872.

    Article  CAS  Google Scholar 

  39. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1991. Identification of an intermediate in autoxidation of carota-l,4-dien-14-al into rugosal A. J. Chem. Soc. Perkin Trans. 1. 1991: 211–214.

    Article  Google Scholar 

  40. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1991. Intermediates in the autoxidation of a non-conjugated cyclic diene. J. Chem. Soc., Chem. Commun. 1991: 1185–1186.

    Article  Google Scholar 

  41. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1993. Autoxidation study of carotane sesquiterpenes possessing a non-conjugated 1,4-diene system. J. Chem. Soc. Perkin Trans. 1. 1993: 2351–2356.

    Article  Google Scholar 

  42. HASHIDOKO, Y. 1996. The phytochemistry of Rosa rugosa. Phytochemistry 43: 535–549.

    Article  CAS  Google Scholar 

  43. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1991. Novel bisabolanoids in Rosa rugosa leaves. Z. Naturforsch. 46c: 349–356.

    Google Scholar 

  44. HASHIDOKO, Y., TAHARA, S., IWAYA, N., MIZUTANI, J. 1991. Highly oxygenated bisabolanoids in Rosa rugosa leaves. Z. Naturforsch. 46c: 357–363.

    Google Scholar 

  45. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1991. Carotanoids and an acoranoid from Rosa rugosa leaves. Phytochemistry 30: 3729–3739.

    Article  CAS  Google Scholar 

  46. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1991. 2-Phenoxychromones and a structurally related flavone from leaves of Rosa rugosa. Phytochemistry 30: 3837–3838.

    Article  Google Scholar 

  47. HASHIDOKO, Y., IWAYA, N., TAHARA, S., MIZUTANI, J. 1991. Changes in carotane sesquiterpenoids in Rosa rugosa leaves. Nippon Nogeikagaku Kaishi (in Japanese) 65: 1483–1488.

    Article  CAS  Google Scholar 

  48. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1992. Rugosal A and related carotane sesquiterpenes in the glandular trichome exudate of Rosa rugosa. Phytochemistry 31: 779–782.

    CAS  Google Scholar 

  49. HASHIDOKO, Y., TAHARA, S., MIZUTANI, J. 1992. Sesquiterpene hydrocarbons in glandular trichome exudate of Rosa rugosa leaves. Z. Naturforsch. 47c: 353–359.

    Google Scholar 

  50. TAHARA, S., HANAWA, F., HARADA Y., MIZUTANI, J. 1988. A fungitoxin inducibly produced by dandelion leaves treated with cupric chloride. Agric. Biol. Chem. 52: 2947–2948.

    Article  CAS  Google Scholar 

  51. TAKASUGI, M., OKINAKA, S., KATSUI, N., MASAMUNE, T. 1985. Isolation and structure of lettucenin A, a novel guaianolide phytoalexin from Lactuca sativa var capitata (Compositae). J. Chem. Soc. Chem. Commun. 1985: 621–••.

    Google Scholar 

  52. TAHARA, S., NAKAHARA, S., MIZUTANI, J., INGHAM, J.L. 1984. Fungal transformation of the antifungal isoflavone luteone. Agric. Biol. Chem. 48: 1471–1477.

    Article  CAS  Google Scholar 

  53. HANAWA, F., KANAUCHI, M., TAHARA, S., MIZUTANI, J. 1995. Lettucenin A as a phytoalexin of dandelion and its elicitatation in dandelion cell cultures. J. Fac. Agric. Hokkaido Univ. 66: 151–162.

    Google Scholar 

  54. HOMANS, A.L., FUCHS, A. 1970. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. 51: 327–329.

    Article  PubMed  CAS  Google Scholar 

  55. HANAWA, F., TAHARA, S., MIZUTANI, J. 1991. Isoflavonoids produced by Iris pseudacorus leaves treated with cupric chloride. Phytochemistry 30: 157–163.

    Article  CAS  Google Scholar 

  56. HANAWA, F., TAHARA, S., MIZUTANI, J. 1991. Flavonoids produced by Iris pseudacorus leave treated with cupric chloride. Phytochemistry 30: 2197–2198.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mizutani, J. (1999). Plant Ecochemicals from the Viewpoint of Plant Defense. In: Romeo, J.T. (eds) Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Recent Advances in Phytochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4689-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4689-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7123-6

  • Online ISBN: 978-1-4615-4689-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics