Skip to main content

On How Altered Glutamate Homeostasis May Contribute to Demyelinating Diseases of the Cns

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 468))

Abstract

Glial cells communicate reciprocally with neurons in multiple ways, both in synaptic and non-synaptic regions of the central nervous system. In the latter, neuron to glial and glial to glial signals can be mediated by neurotransmitters. Here, we review the presence and some of the functional properties of glutamate transporters and receptors in oligodendrocytes. In addition, we present data illustrating that alterations in glutamate homeostasis can be excitotoxic to oligodendroglia and that the tissue lesions caused by overactivation of glutamate receptors resemble those observed in demyelinating diseases such as multiple sclerosis. Overall, this information indicates that aberrant glutamate signaling may contribute to the development of some white matter pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ankarcrona M., Dypbukt, J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton, S.A., and Nicotera, P. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  • Arriza, J.L., Eliasof S., Kavanaugh, M.P., and Amara, S.G. (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA, 94, 4155–4160.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, A. and Khrestchatisky, M. (1994) Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development. J. Neurochem. 62, 2057–2060.

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., and Lipton, S.A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92, 7162–7166.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N. (1996) Calcium permeability of glutamate-gated channels in the central nervous system. Curr. Op. Neurobiol. 6, 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil P., Carter, B.D., Dobrowsky, R.T., and Chao, M.V. (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1992) Excitotoxic cell death. J. Neurobiol. 23, 1261–1276.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 269, 689–695.

    Article  Google Scholar 

  • Fairman, W.A., Vanderberg, R.J, Arriza, J.L., Kavanaugh, M.P., and Amara, S.G. (1995) An excitatory amino-acid transporter with properties of a ligand-gated channel. Nature, 375, 599–603.

    Article  PubMed  CAS  Google Scholar 

  • García-Barcina, J.M. and Matute, C. (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur. J Neurosci. 8, 2379–2387.

    Article  PubMed  Google Scholar 

  • García-Barcina, J.M. and Matute, C. (1998) AMPA-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Mol. Brain Res. 53, 270–276.

    Article  PubMed  Google Scholar 

  • Hodges-Savola C., Rogers, S.D., Ghilardi, J.R., Timm, D.R., and Mantyh, P.W. (1996) β-adrenergic receptors regulate astrogliosis and cell proliferation in the central nervous system in vivo. Glia 17, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann, M. and Heinemann, S.F. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y., Trotti D., Nussberger S., and Hediger, M.A. (1997) The high affinity glutamate transporter family: structure, function, and physiological relevance. In: Neurotransmitter transporters. Structure, function, and regulation (Reith MEA, ed), pp. 171–213. Totowa, NJ: Humana.

    Google Scholar 

  • Kühler M., Burnashev, N, Sakmann B., and Seeburg, PH. (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500.

    Article  Google Scholar 

  • Lipton, S.A. and Rosenberg, P.A. (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N. Eng. J. Med. 330, 613–622.

    Article  CAS  Google Scholar 

  • Martin, D.L. (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5, 81–94.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, J.C. and Sadoul, R. (1996) ICE-like proteases execute the neuronal death program. Curr. Op. Neurobiol. 6, 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Matute, C. (1998) Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proc. Natl. Acad. Sci. USA 95, 10229–10234.

    Article  PubMed  CAS  Google Scholar 

  • Matute, C. and Miledi, R. (1993) Neurotransmitter receptors and voltage-dependent calcium channels encoded by mRNA from the adult corpus callosum. Proc. Natl. Acad. Sci. USA 90, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Matute C., Sánchez-Gómez, M.V., Martínez-Millán, L., and Miledi, R. (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl. Acad. Sci. USA 94, 8830–8835.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, E.K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress, and aging. Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  • Paternain, A.V., Morales M., and Lerma, J. (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Porter, J.T. and McCarthy, K.D. (1997) Astrocytic neurotransmitter receptors in situand in vivo. Prog. Neurobiol. 51, 439–455.

    Article  PubMed  CAS  Google Scholar 

  • Prineas, J.W. and McDonald, W.I. (1997) Demyelinating diseases. In Greenfield’s Neuropathology, (D.I. Graham and P.L. Lantos, eds.), pp. 813–896, London: Arnold.

    Google Scholar 

  • Ransom, B.R. and Orkand, R.K. (1996) Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci. 19, 352–358.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, ID., Martin L., Levey, A.I., Dykes-Hoberg M., Jin L., Wu, D, Nash, N, and Kuncl, R.W. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, ID., Dykes-Hoberg M., Pardo C., Bristol, L.A., Jin L., Kuncl, R.W., Kanai Y., Hediger, M.A., Wang Y., Schielke, J.P., and Welty, D.F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Steinhäuser, C. and Gallo, V. (1996) News on glutamate receptors in glial cells. Trends Neurosci. 19, 339–345.

    Article  PubMed  Google Scholar 

  • Weinrich, D. and Hammerschlag, R. (1975) Nerve impulse-enhanced release of amino acids from nonsynaptic regions of peripheral and central nerve trunks of bullfrog. Brain Res. 84, 137–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matute, C., Domercq, M., Fogarty, D.J., de Zulueta, M.P., Sánchez-Gómez, M.V. (1999). On How Altered Glutamate Homeostasis May Contribute to Demyelinating Diseases of the Cns. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics