Skip to main content

Metabolic Coupling and the Role Played By Astrocytes in Energy Distribution and Homeostasis

  • Chapter
The Functional Roles of Glial Cells in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 468))

Abstract

The lactate accumulated during late gestation is actively oxidized within the first hours of extrauterine life (Medina et al., 1980; Persson and Tunell, 1971), indicating that neonatal tissues actively utilize blood lactate. It is noteworthy that gluconeogenesis is not yet induced in these circumstances (Fernandez et al., 1983; Medina et al., 1980), in agreement with the idea that lactate is utilized directly as a source of energy and carbon skeletons by some neonatal tissues (see: Medina et al., 1992). Since lactate removal takes place at a very high rate, it is likely that several tissues would be involved in lactate utilization. Thus, it has been reported that neonatal lung (Patterson et al., 1986), heart (Fernandez, E. and Medina, J. M., unpublished results), and liver (Almeida et al., 1992) utilize lactate for energy production and/or lipogenic purposes. However, special attention has been paid to lactate utilization by the brain, probably because this organ must continue its development even under the starvation that occurs during the presuckling period. Lactate utilization by the brain has been reported in fetal (Bolanos and Medina, 1993), early newborn (Arizmendi and Medina, 1983; Fernández and Medina, 1986; Vicario et al., 1991; Vicario and Medina, 1992) and suckling rats (Dombrowski et al., 1989; Itoh and Quastel, 1970), in newborn dogs (Hellmann et al., 1982) and in glucose-6-phosphatase-deficient human babies (Fernandes et al., 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, A., Bolanos, J.P., and Medina, J.M. (1992) Ketogenesis from lactate in rat liver during the perinatal period. Pediatr. Res. 31: 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Amoroso, S., Schmid-Antomarchi, H., Fosset, M., and Lazdunski, M. (1990) Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247: 852–854.

    Article  PubMed  CAS  Google Scholar 

  • Arizmendi, C. and Medina, J.M. (1983) Lactate as an oxidizable sustrate for rat brain in vivo during perinatal period. Biochem. J. 214: 633–635.

    PubMed  CAS  Google Scholar 

  • Bell, J.E., Hume, R., Busuttil, A., and Burchell, A. (1993) Immunocytochemical detection of the microsomal glucose-6-phosphate in human brain astrocytes. Neuropathol Appl. Neurobiol 19: 429–435.

    Article  CAS  Google Scholar 

  • Bennett, M.V.L. (1977) Electrical transmission: a functional analysis and comparison with chemical transmission. In:Cellular biology of neurons, Handbook of Physiology, The nervous system. E. Kandel, ed., Williams and Wilkins, Baltimore, Vol. 1, pp. 357–416.

    Google Scholar 

  • Bennett, M.V.L., Barrio, T.A., Bargiello, T.A., Spray, D.C., Hertzberg, E., and Sáez, J.C. (1991) Gap junctions: new tools, new answers, new questions. Neuron 6: 305–32

    Article  PubMed  CAS  Google Scholar 

  • Bock, A., Tegtmeier, F., Hansen, A., and Holler, M. (1993) Lactate and postischemic recovery of energy metabolism and electrical activity in the isolated perfused rat brain. J. Neurosurg. Anesthesiol. 5: 94–10

    PubMed  CAS  Google Scholar 

  • Bolanos, J.P. and Medina, J.M. (1993) Lipogenesis from lactate in fetal rat brain during late gestation. Pediatr. Res. 33: 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Brookes, N. and Yarowssy, P.J. (1985) Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 44: 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone, R., White, T.W., and Paul, D.L. (1996) Connections with connexins: The molecular basis of direct intercellular signalling. Europ. J. Biochem. (in press).

    Google Scholar 

  • Cremer, J.E. (1982) Substrate utilization and brain development. J. Cer. Blood Flow Metab. 2: 394–407.

    Article  CAS  Google Scholar 

  • Dombrowski, G.J., Swiatek, K.R., and Chao, K.L. (1989) Lactate, 3-hydroxybutyrate and glucose as substrates for the early postnatal rat brain. Neurochem Res 14: 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R., Gebhardt, R., and Hamprecht, B. (1993) Glycogen in astrocytes, possible function as lactate supply for neighboring cells. Brain Res. 62: 208–214.

    Article  Google Scholar 

  • El-Fouly, M.H., Trosko, J.E., and Chang, C.-C. (1987) A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res.\168: 422–430.

    Article  PubMed  CAS  Google Scholar 

  • Enkvist, M.O.K. and McCarthy, K.D. (1994) Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, J., Berger, R., and Smit, G.P.A. (1984) Lactate as a cerebral metabolic fuel for glucose-6-phosphate deficient children. Pediatr. Res. 18: 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Fernández, E. and Medina, J.M. (1986) Lactate utilization by the neonatal rat brain in vitro. Competition with glucose and 3-hydroxybutyrate. Biochem. J. 234: 489–492.

    PubMed  Google Scholar 

  • Fernández, E., Valcarce, C, Cuezva, J.M., and Medina, J.M. (1983) Postnatal hypoglycæmia and gluconeogenesis in the newborn rat. Delayed onset of gluconeogenesis in prematurely delivered newborns. Biochem. J. 214: 525–532.

    PubMed  Google Scholar 

  • Fuxe, K., Tinner, B., Staines, W., Hemsen, A., Hersh, L., and Lundberg, J. (1991) Demonstration and nature of endothelin-3-like immunoreactivity in somatostatin and choline acetyltransferase-immunoreactive nerve cells of the neostriatum of the rat. Neurosci. Lett. 123: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Giaume, C., Cordier, J., and Glowinski, X (1992) Endothelins inhibit junctional permeability in cultured mouse astrocytes. Eur. J. Neurosc. 4: 877–881.

    Article  Google Scholar 

  • Giaume, C., Marin, P., Cordier, J., Glowinski, J., and Premont, J. (1991) Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc. Natl. Acad. Sci. USA 88: 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  • Giaume, C. and McCarthy, K.D. (1996) Control of gap-junctional communication in astrocytic networks. T.I.N.S. 19: 319–325.

    CAS  Google Scholar 

  • Giaume, C., Tabernero, A., and Medina, J.M. (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21: 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Granda, B., Tabernero, A., Sánchez-Abarca, L.I., and Medina, J.M. (1998) The K-ATP channel regulates the effect of Ca2+ on gap junction permeability in cultured astrocytes. FEBS Letters En prensa.

    Google Scholar 

  • Hellmann, J., Vanucci, R.C., and Nardis, E. (1982) Blood-brain barrier permeability to lactic acid in the newborn dog: lactate as a cerebral metabolic fuel. Pediatr. Res. 16: 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, T. and Quastel, J.H. (1970) Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem. J. 116: 641–655.

    CAS  Google Scholar 

  • Izumi, Y., Benz, A., Zorumski, G, and Olney, J. (1994) Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices. Neuroreport 5: 617–620.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, N., Yamamoto, T, Yamamoto, H., Mc Carron, R.M., and Spatz, M. (1994) Endothelin stimulates ATPase activity in brain capillary endothelium. J. Physiol. 480: P17–P17.

    Google Scholar 

  • Klaunig, J.E. and Ruch, R.J. (1990) Role of inhibition of intercellular communication in carcinogenesis. Lab. Invest. 62: 135–146.

    PubMed  CAS  Google Scholar 

  • Lavado, E., Sanchez-Abarca, L.I., Tabernero, A., Bolaños, J.P., and Medina, J.M. (1997) Oleic acid inhibits gap junction permeability and increases glucose uptake in cultured rat astrocytes. J. Neurochem. 69: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W. (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev. 61: 829–913.

    PubMed  CAS  Google Scholar 

  • Mac Cumber, M.W., Ross, C.A., and Snyder, S.H. (1990) Endothelin in brain: receptors, mitogenesis and biosynthesis in glial cells. Proc. Natl. Acad. Sei. USA 87: 2359–2363.

    Article  CAS  Google Scholar 

  • Maran, A., Cranston, I., Lomas, J., Macdonald, I., and Amiel, S. (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343: 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Medina, J.M., Cuezva, J.M., and Mayor, F. (1980) Non-gluconeogenic fate of lactate during the early neonatal period in the rat. FEBS Lett. 114: 132–134.

    Article  PubMed  CAS  Google Scholar 

  • Medina, J.M., Vicario, C., Juanes, M., and Fernández, E. (1992) R. Knopp, ed., CRC Press, Boca Raton, FL, Vol. pp. 233–258

    Google Scholar 

  • Naus, C.C.G, Bechberger, J.F, Caveney, S., and Wilson, J.X. (1991) Expression of gap junction genes in astrocytes and C6 glioma cells. Neurosci. Lett. 126: 33–36.

    Article  Google Scholar 

  • Neyton, J. and Trautman, A. (1985) Single-channel currents of an intercellular junction. Nature 317: 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Nicolino, M. (1997) Hyperinsulinisme du nourrisson: le roôle-cle des canaux K+. Med. Sci. 13: 276–277.

    Google Scholar 

  • Niki, I. and Ashcroft, S.J. (1993) Characterization and solubilization of the sulphonylurea receptor in rat brain. Neuropharmacology 32: 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, C.E., Konini, M.V., Selig, W.M., Owens, C.M., and Rohades, R. (1986) Integrated substrate utilization by perinatal lung. Exp. Lung Res. 10: 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin, L. and Magistretti, P. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sei. USA 91: 10625–10629.

    Article  CAS  Google Scholar 

  • Peracchia, C., Lazrak, A., and Peracchia, L.L. (1994) Molecular models of channel interaction and gating in gap junctions. In: Handbook of membrane channels. C Peracchia, ed., Academic Press, Vol. pp. 361–377.

    Google Scholar 

  • Persson, B. and Tunell, R. (1971) Influence of environmental temperature and acidosis on lipid mobilization in the human infant during the first two hours after birth. Acta Pædiatr. Scand. 60: 385–398.

    Article  PubMed  CAS  Google Scholar 

  • Rose, C.R. and Ransom, B.R. (1997) Gap junction equalize intracellular Na+ concentration in astrocytes. Glia 20: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A., Westergaard, N., and Hertz, L. (1993) Neuronal-Astrocytic Interactions in Glutamate Metabolism. Biochem. Soc. Trans. 21: 49–53.

    PubMed  CAS  Google Scholar 

  • Schurr, A., West, C.A., and Rigor, B.M. (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald, U., Westergaard, N., Krane, J., Unsgard, G., Petersen, S.B., and Schousboe, A. (1991) First direct demonstration of preferential release of citrate from astrocytes using <C-13> NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Lett. 128: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Tabernero, A., Bolanos, J.P., and Medina, J.M. (1993) Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochem. J. 294: 635–638.

    PubMed  CAS  Google Scholar 

  • Tabernero, A., Giaume, C., and Medina, J.M. (1996a) Endothelin-1 regulates glucose utilization in cultured rat astrocytes by controlling intercellular communication through gap junctions. Glia 16: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Tabernero, A., Vicario, C, and Medina, J.M. (1996b) Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neurosci. Res. 26: 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., Driscoll, F., Law, M.J., and Sokoloff, L. (1995) Role of sodium and potasium ions in regulation of glucose metabolism in cultured astroglia. Proc. Natl. Acad. Sci. USA 92: 4616–4620.

    Article  PubMed  CAS  Google Scholar 

  • Venance, L., Stella, N., Glowinski, I, and Giaume, C. (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signalling in cultured rat astrocytes. J. Neurosci. 17: 1981–1992.

    PubMed  CAS  Google Scholar 

  • Vera, B., Sanchez-Abarca, L.I., Bolanos, J.R, and Medina, J.M. (1996) Inhibition of astrocyte gap junctional communication by ATP depletion is reversed by calcium sequestration. FEBS letters 392: 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Vicario, C., Arizmendi, C., Malloch, J.G., Clark, J.B., and Medina, J.M. (1991) Lactate utilization by isolated cells from early neonatal rat brain. J. Neurochem. 57: 1700–1707.

    Article  PubMed  CAS  Google Scholar 

  • Vicario, C. and Medina, J.M. (1992) Metabolism of lactate in the rat brain during the early neonatal period. J. Neurochem. 58: 32–40.

    Article  Google Scholar 

  • Vicario, C., Tabernero, A., and Medina, J.M. (1993) Regulation of lactate metabolism by albumin in rat neurons and astrocytes from primary culture. Pediatr. Res. 34: 709–715.

    Article  PubMed  CAS  Google Scholar 

  • Virsolvy-Vergine, A., Salazar, G., Sillard, R., Denoroy, L., Mutt, V., and Bataille, D. (1996) Endosulfine, endogenous ligand for the sulphonylurea receptor. Diabetologia 39: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Westergaard, N., Sonnewald, U., and Schousboe, A. (1994) Release of alpha-ketoglutarate, malate, and succinate from cultured astrocytes: possible role in amino acid neurotransmitter homeostasis. Neurosci. Lett. 176: 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Eisenman, D., and Haddad, G.G. (1993) Sulphonylurea receptor in rat brain: effect of chronic hypoxia during development. Pediatr. Res. 34: 634–641.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto, S., Ishizaki, Y., Kurihara, H., Sasaki, T, Yoshizumi, M., Yanagisawa, M., Yazaki, Y., Masaki, T., Takakura, K., and Murota-S (1990) Cerebral microvessel endothelium is producing endothelin. Brain. Res. 508: 283–285.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medina, J.M., Tabernero, A., Giaume, C. (1999). Metabolic Coupling and the Role Played By Astrocytes in Energy Distribution and Homeostasis. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics