Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 468))

Abstract

The historical perception of glia as simply the glue or putty that holds together the neurons in the nervous system has undergone a recent, radical change (Dermietzel and Spray, 1998). Glia are now known to possess many of the channels, receptors, and transport machinery formerly assigned exclusively to neurons for dissipation of local changes in the neuronal microenvironment. Endowed with these mechanisms, individual glial cells, astrocytes in particular, respond to diverse nervous system signals and thus actively participate in brain function. Because glial cells are connected to one another by gap junction channels, allowing direct intercellular diffusion of ions and signaling molecules, the receptors on individual glia could be effectively shared throughout the network. Thus, gap junctions serve to coordinate and integrate glial activity throughout the nervous system, providing a mechanism whereby both bulk flow of water and solutes as well as regenerative processes such as Ca2+ waves may travel long distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade-Rozental, A.F., Zheng X., Chiu-F.C., Rozental R., and Spray, D.C., 1998, Bidirectional signaling via gap junctions between mammalian hippocampal neurons and astrocytes. Society for Neuroscience 24: 1040:415.16.

    Google Scholar 

  • Anzini P., Neuberg, D.H., Schachner M., Nelles E., Willecke K., Zielasek J., Toyka, K.V., Suter U., and Martini, R., 1997, (atStructural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17: 4545–4551.

    PubMed  CAS  Google Scholar 

  • Armstrong, C.M., 1971, (atInteraction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58: 413–437.

    Article  PubMed  CAS  Google Scholar 

  • Balice-Gordon, R.J., Bone, L.J., and Scherer, S.S., 1998, (atFunctional gap junctions in the Schwann cell myelin sheath. (atJ. Cell Biol 142: 1095–1104.

    Google Scholar 

  • Batter, D.K., Corpina, R.A., Roy C., Spray, D.C., Hertzberg, E.L., and Kessler, J.A., 1992, (atHeterogeneity in gap junction expression in astrocytes cultured from different brain regions. Glia. 6: 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Belliveau, D.J. and Naus, C.C., 1995, (atCellular localization of gap junction mRNAs in developing rat brain. Dev. Neurosci. 17: 81–96.

    Article  PubMed  CAS  Google Scholar 

  • Bergoffen J., Scherer, S.S., Wang S., Scott, M.O., Bone, L.J., Paul, D.L., Chen K., Lensch, M.W., Chance, P.F., and Fischbeck, K.H., 1993, (atConnexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262: 2039–2042.

    Article  PubMed  CAS  Google Scholar 

  • Bone, L.J., Deschenes, S.M., Balice-Gordon, R.J., Fischbeck, K.H., and Scherer, S.S., 1997, (atConnexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol. Dis. 4: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Bourke, R.S., Kimelberg, H.K., Nelson, L.R., Barron, K.D., Auen, E.L., Popp, A.J., and Waldman, J.B, 1980, (atBiology of glial swelling in experimental brain edema. Adv. Neurol. 28: 99–109.

    PubMed  CAS  Google Scholar 

  • Campos deCarvalho, A.C., Roy C., Hertzberg, E.L., Tanowitz, H.B., Kessler, J.A., Weiss, L.M. Wittner M., Dermietzel R., Gao Y., and Spray, D.C., 1998, (atGap junction disappearance in astrocytes and lep-tomeningeal cells as a consequence of protozoan infection. Brain Res. 20: 304–314.

    Article  Google Scholar 

  • Chandross, K.J., Kessler, J.A., Cohen, R.I., Simburger E., Spray, D.C., Bieri P., and Dermietzel, R., 1996, (atAltered connexin expression after peripheral nerve injury. Mol. Cell Neurosci. 7: 501–518.

    Article  PubMed  CAS  Google Scholar 

  • Charles, A., 1998, (atIntercellular calcium waves in glia. Glia. 24: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Chiang J., Kowada M., Arnes A., Wright, R.L., and Majino, G., 1968, (atCerebral ischemia: III. Vascular changes. Am. J. Pathol. 52: 455–462.

    PubMed  CAS  Google Scholar 

  • Condorelli, D.F., Parenti R., Spinella F., Salinaro, A.T., Belluardo N., Cardile V., and Cicirata, F., 1998, (atCloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. (tiEur. J. Neurosci. 10: 1202–1208.

    Google Scholar 

  • Deitmar, J.W., 1998, pH regulation in invertebrate glia. In: pH and Brain Function. K. Kaila and B.R. Ransom, eds. Wiley-Liss, Inc., N.Y., pp. 233–252.

    Google Scholar 

  • delZoppo, G.J., 1994, (atMicrovascular changes during cerebral ischemia and reperfusion. (tiCerebrovasc. Brain Metab. Rev. 6: 47–96.

    Google Scholar 

  • Dermietzel, R., 1996, (atMolecular diversity and plasticity of gap junction in the nervous system. In: Gap Junctions in the Nervous System. D.C. Spray and R. Dermietzel, eds. R.G. Landes Company, Georgetown, Texas, pp. 13–38.

    Google Scholar 

  • Dermietzel R., Farooq M., Kessler, J.A., Althaus H., Hertzberg, E.L., and Spray, D.C., 1997, (atOligodendrocytes express gap junction proteins connexin32 and connexin45. Glia. 20: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R., Hertberg, E.L., Kessler, J.A., and Spray, D.C., 1991, (atGap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J. Neurosci. 11: 1421–1432.

    PubMed  CAS  Google Scholar 

  • Dermietzel, R. and Spray, D.C., 1998, From neuro-glue (‘Nervenkit’) to glia: a prologue. Glia. 24: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R. and Spray, D.C., 1993, (atGap junctions in the brain: where, what type, how many and why? Trends Neurosci.16:186–192.

    Google Scholar 

  • Dermietzel R., Traub O., Hwang, T.K., Beyer E., Bennett, M.V., Spray, D.C., and Willecke, K., 1989, (atDifferential expression of three gap junction proteins in developing and mature brain tissue. Proc. Natl. Acad. Sci. USA 86: 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M., Mutoh T., Dezawa A., and Adachi-Usami, E., 1998, (atPutative gap junctional communication between axon and regenerating Schwann cells during mammalian peripheral nerve regeneration. Neurosci. 85: 663–667.

    Article  CAS  Google Scholar 

  • Dilber, M.S., Abedi, M.R., Christensson B., Bjorkstrand B., Kidder, G.M., Naus, C.C., Gahrton G., and Smith, C.I., 1997, (atGap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer. Res. 15: 1523–1528.

    Google Scholar 

  • Duffy, H.S., 1997, (atAstrocyte connexin43 and oligodendrocyte connexin32 link to form heterolgous, heterotypic glial gap junctions. Society for Neurosci. 23 (Part 2) 883.1.

    Google Scholar 

  • Edelman, G.M., 1988, (atMorphoregulatory molecules. Biochem. 27: 3533–3543.

    Article  CAS  Google Scholar 

  • Ek, J.F., Delmar M., Perzova R., and Taffet, S.M., 1994, (atRole of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ. Res. 74: 1058–1064.

    Article  PubMed  CAS  Google Scholar 

  • Ek-Vitorin, J.F., Calero G., Morely, G.E., Coombs W., Taffet, S.M., and Delmar, M., 1996, (atpH regulation of connexin-43: Molecular analysis of the gating particle. Biophys. J. 71: 1273–1284.

    Article  PubMed  CAS  Google Scholar 

  • Elfgang C., Eckert R., Lichtenberg-Frate H., Butterweck A., Traub O., Klein, R.A., Hulser, D.F., and Willecke, K., 1995, (atSpecific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol. 129: 805–817.

    Article  PubMed  CAS  Google Scholar 

  • Elshami, A.A., Saavedra A., Zhang H., Kucharczuk, J.C., Spray, D.C., Fishman, G.I., Amin, K.M., Kaiser, L.R., and Albelda, S.M., 1996, (atGap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene. Ther. 3: 85–92.

    PubMed  CAS  Google Scholar 

  • Enkvist, M.O. and McCarthy, K.D., 1992, Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J. Neurochem.59: 519–526.

    Google Scholar 

  • Feuerstein, G.Z., Liu T., and Barone, EC, 1994, (atCytokines, inflammation, and brain injury: Role of tumor necrosis factor-α. Cerebrovasc. Brain Metab. Rev. 6: 341–360.

    PubMed  CAS  Google Scholar 

  • Fraher, J.R, 1992, (atThe CNS-PNS transitional zone of the rat. Morphomertric studies at cranial and spinal levels. (tiProg. Neurobiol. 38: 261–316.

    Google Scholar 

  • Froes, M.M. and Carvalho, A.C., 1998, (atGap junction-mediated loops of neuronal-glial interactions. Glia. 24: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K., Nagafuchi A., Tsukita S., Kuraoka A., Ohikuma A., and Shibata, Y., 1997, (tiDynamics of connexins, E-cadherins and α-catenin on cell membranes during gap junction formation.

    Google Scholar 

  • Garcia, J.H., Liu, K-F., Yoshida Y., Chen S., and Lian, J., 1994, (atBrain microvessels: Factors altering their potency after the occlusion of a middle cerebral artery (Wistar rat). Am. J. Pathol. 145: 728–740.

    PubMed  CAS  Google Scholar 

  • Giaume C., Marin P., Cordier J., Glowinski J., and Premont, J., 1991b, (atAdrenergic regulation of intercellular communication between cultured striatal astrocytes from mouse. Proc. Natl. Acad. Sci. USA 88: 5577–558

    Article  PubMed  CAS  Google Scholar 

  • Giepmans, B.N.G. and Moolenaar, W.H., 1998, (atThe gap junction protein connexin43 interacts with the second PDZ domain of the zona occuldens-1 protein. Curr. Biol 8: 931–934.

    Article  PubMed  CAS  Google Scholar 

  • Giffard, R.G., Monyer H., Christine, C.W., and Choi, D.W., 1990, (atAcidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, S.A., Pulsinelli W., Clarke, W.Y., Kraig, R.P., and Plum, F., 1989, (atThe effects of extracellular acidosis on neurons and glia in vitro. J. Cereb. Blood Flow Metab. 9: 471–477.

    Google Scholar 

  • Guthrie, P.B., Lee, R.E., Rehder V., Schmidt, M.F., and Kater, S.B., 1994, (atSelf-recognition: a constraint on the formation of electrical coupling neurons. J. Neurosci. 14: 1477–1485.

    PubMed  CAS  Google Scholar 

  • Hassinger, T.D., Gutherie, P.B., Atlinson, P.B., Bennett, M.V.L., and Kater, S.B., 1996, (atAn extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl. Acad. Sci. USA 93: 13268–13273.

    Article  PubMed  CAS  Google Scholar 

  • Herr, J.C., 1976, (atReflexive gap junctions. Gap junctions between processing arising from the same ovarian decidual cell. J. Cell Biol. 69: 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Hofer A., Saez, J.C., Chang, C.C., Trosko, J.E., Spray, D.C., and Dermietzel, R., 1996, (atC-erbB2/neu transfection induces gap junctional communication incompetence in glial cells. J. Neurosci. 16: 4311–4321.

    PubMed  CAS  Google Scholar 

  • Hossain, M.Z., Peeling J., Sutherland, G.R., Hertzberg, E.L., and Nagy, J.I., 1994a, (atIschemia-induced cellular redistribution of astrocytic gap junctional protein connexin43 in rat brain. Brain Res. 652: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, M.Z., Sawchuk, M.A., Murphy, L.J., Hertzberg, E.L., and Nagy, J.I, 1994b, (atKainic acid induced alterations in antibody recognition of connexin43 and loss of astrocytic gap junctions in rat brain. Glia. 10: 250–265.

    Article  PubMed  CAS  Google Scholar 

  • Itoh M., Nagafuchi A., Moroi S., and Tsukita, S., 1997, (atInvolvement of ZO-1 in cadherin-based cell adhesion through its direct binding to α catenin and actin filaments. (atJ. Cell Biol. 138: 181–192.

    Google Scholar 

  • Kasai, H. and Petersen, O.H., 1994, (atSpatial dynamics of second messengers: IP3 and cAMP as long-range associative messengers. Trends Neurosci. 17: 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Katsura, K. and Siesjo, Bo.K., 1998, (atAcid-base metabolism in ischemia. In: pH and Brain Function, K. Kaila and B.R. Ransom, eds., Wiley-Liss, Inc., N.Y., pp. 563–58

    Google Scholar 

  • Kimelberg, H.K., 1992, (atAstrocytic edema in CNS trauma. J. Neurotrauma. 9: S71–S81.

    PubMed  Google Scholar 

  • Kunkler, P.E. and Kraig, R.P., 1998, (atCalcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J. Neurosci. 18: 3416–3425.

    PubMed  CAS  Google Scholar 

  • Kwak, B.R., Saez, J.C., Wilders R., Chanson M., Fishman, G.I., Hertzberg, E.L., Spray, D.C., and Jongsma, H.J., 1995, (atEffects of cGMP-dependent phosphorylation on rat and human connexin43 gap junction channels. Pflugers Arch. 430: 770–778.

    Article  PubMed  CAS  Google Scholar 

  • Lascola, C.D. and Kraig, R., 1998, (atAstroglial pH during and after global ischemia. In: In: pH and Brain Function. K. Kaila and B.R. Ransom, eds. Wiley-Liss, Inc., N.Y., pp. 583–603.

    Google Scholar 

  • Li, W.E., Ochalski, P.A., Hertzberg, E.L., and Nagy, J.I., 1998, (atimmuno-recognition, ultrastructure and phosphorylation status of astrocytic gap junctions and connexin43 in rat brain after cerebral focal ischaemia. Eur. J. Neurosci. 10: 2444–2463.

    Article  CAS  Google Scholar 

  • Liu S., Taffet S., Stoner L., Delmar M., Vallano, M.L., and Jalife, J., 1993, (atA structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: The carboxyl tail length. Biophys. J. 64: 1422–1433.

    Article  PubMed  CAS  Google Scholar 

  • Long, D.M., 1981, (atTraumatic brain edema. Clin. Neurosurg. 29: 174–202.

    Google Scholar 

  • Martin, D.H., 1995, (atThe role of glia in the inactivation of neurotransmitters. In: Neuroglia, H. Kettenmann and B.R. Ransom, eds., Oxford University Press, N.Y., pp. 732–74

    Google Scholar 

  • Martins-Ferreira, H. and Ribeiro, L.J., 1995, (atBiphasic effects of gap junctional uncoupling agents on the propagation of retinal spreading depression. Braz. J. Med. Biol. Res. 28: 991–994.

    PubMed  CAS  Google Scholar 

  • Massa, P.T. and Mugnaini, E., 1982, Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7: 523–538.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A., Arai Y., Urano A., and Hyodo, S., 1991, (atAndrogen regulates gap junction mRNA expression in androgen-sensitive motoneurons in rat spinal cord. Neurosci. Lett. 131: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R.A., Laird, D.W., Revel, J-P., and Johnson, R.G., 1992, (atInhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Micevych, PE. and Abelson, L., 1991, (atDistribution of mRNA coding for liver and heart gap junction proteins in the rat central nervous system. J. Comp. Neurol. 305: 96–118.

    Article  PubMed  CAS  Google Scholar 

  • Miner P., Lampe P., Atkinson M., and Johnson, R., 1995, (atExtracellular calcium and caherins regulate the process of gap junction assembly between cells in culture. Prog. Cell Res. 4: 331–334.

    Article  CAS  Google Scholar 

  • Moreno, A.P., Chen K., and Spray, D.C., 1999, (atFacilitation at electronic synapses formed of heterotypic cardiac connexins. Am. J. Physiol.

    Google Scholar 

  • Moreno, A.P., Laing, J.G., Beyer, E.C., and Spray, D.C., 1995, (atProperties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHepl) cells. Am. J. Physiol. 268(2 Pt1): C356–365.

    Google Scholar 

  • Moreno, A.P., Rook, M.B., Fishman, G.J., and Spray, D.C., 1994, (atGap junction channels: Distinct voltage-sensitive and insensitive conductance states. Biophys. J. 67: 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, A.P., Saez, J.C., Fishman, G.I., and Spray, D.C., 1994, (atHuman connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ. Res. 74(6): 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  • Morley, G.E., Taffet, S.M., and Delmar, M., 1996, (atIntramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. (?) 1294–1302.

    Google Scholar 

  • Muller, C.M., 1996, (atGap-junctional communication in mammalian cortical astrocytes: development, modifiability and possible functions. In: Gap Junctions in the Nervous System, D.C. Spray and R. Dermietzel, eds. R.G. Landes, Co., TX, pp. 203–212.

    Google Scholar 

  • Muller, T and Kettenmann, H., 1995, (atPhysiology of Bergmann glial cells. Int. Rev. Neurobiol. 38: 341–359.

    Article  PubMed  CAS  Google Scholar 

  • Musil, L.S., Cunninghan, B.A., Edelman, G.M., and Goodenough, D.A., 1990, (atDifferential phosphorylation of the gap junction protein Connexin43 in junctional communication-competent and-deficient cell line.s J. Cell Biol. 11: 2077–2088.

    Article  Google Scholar 

  • Nadarajah B., Thomaidou D., Evans, W.J., and Parnavelas, J.G., 1996, (atGap junctions in the adult cerebral cortex: regional differences in their distribution and cellular expression of connexins. J. Comp. Neurol. 376: 326–342.

    Article  PubMed  CAS  Google Scholar 

  • Naus, C.C., Belliveau, D.J., and Bechberger, J.F., 1990, (atRegional differences in connexin32 and connexin43 messenger RNAs in rat brain. Neurosci. Lett. 111: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard, M., 1994, (atDirect signaling from astrocytes to neurons in cultures of mammalian brain cells. (atScience 263: 1768–1771.

    Google Scholar 

  • Nedergaard M., Coper, A.J.L., and Goldman, S., 1995, (atGap junctions are required for the propagation of spreading depression. J. Neurobiol. 28: 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M., Goldman, S.A., Desai S., and Pulsinella, W.A., 1991, (atAcid-induced death in neurons and glia. J. Neurosci. 11: 2489–2497.

    PubMed  CAS  Google Scholar 

  • Newman, E.A., 1985, (atVoltage-dependent calcium and potassium channels in retinal glial cells. Nature 317: 809–811.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A., 1995, (atGlial cell regulation of extracellular potassium. In: Neuroglia, H. Kettenmann and B.R. Ransom, eds., Oxford University Press, N.Y., pp. 717–731.

    Google Scholar 

  • Pappas, C.A., Rioult, M.G., and Ransom, B.R., 1996, (atOctanol, a gap junction uncoupling agent, changes intracellular [H+] in rat astrocytes. Glia. 16: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Parpura V., Basarsky, T.A., Liu F., Jeftinija, K., Jeftinija S., and Haydon, P.G., 1994, (atGlutamate-mediated astrocyte-neuron signalling. Nature 369(6483): 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Pastor A., Kremer M., Moller T., Kettenmann H., and Dermietzel, R., 1998, (atDye coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter. Glia. 24: 108–120.

    Article  PubMed  CAS  Google Scholar 

  • Perez Velazquez, J.L., Frantseva M., Naus, C.C., Bechberger, J.F., Juneja S.C., Velumian A., Carlen, P.L., Kidder, G.M., and Mills, L.R, 1996, (atDevelopment of astrocytes and neurons in cultured brain slices from mice lacking connexin43. Brain Res. Dev. Brain Res. 97: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Pineda, J. and Aghajanian, G.K., 1997, (atCarbon dioxide regulates the tonic activity of lucus coeruleus neurons by modulating a proton-and polyamine-sensitive inward rectifier potassium current. Neuroscience 77: 723–743.

    Article  PubMed  CAS  Google Scholar 

  • Pitts, J.D., 1994, Cancer gene therapy: a bystander effect using the gap junctional pathway. Mol. Carcinog. 11: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, B.R., 1996, Do glial gap junctions play a role in extracellular ion homeostasis? In: Gap Junctions in the Nervous System, D.C. Spray and R. Dermietzel, eds. R.G. Landes Company, Georgetown, TX., pp. 168–173.

    Google Scholar 

  • Ransom, B.R. and Kettenmann, H., 1990, Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia. 3: 258–266.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, C.B. and Sontheimer, H., 1995, Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. Neurophysiol. 73: 333–346.

    CAS  Google Scholar 

  • Rash, J.E., Duffy, H.S., Dudek, F.E., Bilhartz, B.L., Whalen, L.R., and Yasumura, T., 1997, Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “Panglial Synctium” that is not coupled to neurons. J. Comp. Neurol 388: 265–292.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, R.L., Morales, M.J., Wang S., Liu S., Campbell, D.L., Brahmajothi, M.V., and Strauss, H.C., 1998, Inactivation of voltage-gated cardiac K+ channels. Circ. Res. 82(7):739.

    Article  PubMed  CAS  Google Scholar 

  • Reuss B., Dermietzel R., and Unsicker, K., 1998, Fibroblast groth factor 2 (FGF-2) differentially regulates connexin (cx) 43 expression and function in astroglial cells from distinct brain regions. Glia. 22: 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Rohlmann A., Laskawi R., Hofer A., Dermietzel R., and Wolff, J.R., 1994, Astrocytes as rapid sensors of peripheral axotomy in the facial nucleus of rats. Neurorep. 12: 409–412.

    Article  Google Scholar 

  • Rohlmann A., Laskawi R., Hofer A., Dobo E., Dermietzel R., and Wolff, J.R., 1993, Facial nerve lesions lead to increased immunostaining of astrocytic gap junction protein (connexin43) in corresponding facial nucleus of rats. Neurosci. Lett. 154: 206–208.

    Article  PubMed  CAS  Google Scholar 

  • Rossiter, J.P. and Fraher, J.P., 1990, Intermingling of central and peripheral nervous tissues in rat dorslateral vagal rootlet transitional zones. J. Neuroscytol. 19: 385–407.

    Article  CAS  Google Scholar 

  • Rozental R., Morales M., Mehler, M.F., Urban M., Kremer M., Dermietzel R., Kessler, J.A., and Spray, D.C., 1998, Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J. Neurosci. 18: 1753–1762.

    PubMed  CAS  Google Scholar 

  • Saez, J.C., Connor, J.A., Spray, D.C., and Bennett, M.V.L., 1989, Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc. Natl. Acad. Sci. USA 86: 2708–2712.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J.C., Nairn, A.C., Czernik, A.J., Fishman, G.I., Spray, D.C., and Hertzberg, E.L., 1997, Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J. Mol Cell Cardiol. 29: 2131–2145.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J.C., Nairn, A.C., Czernik, A.J., Spray, D.C., Hertzberg, E.L., Greengard P., and Bennett M.V., 1990, Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur. J. Biochem. 11; 192: 263–273.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, J.L., 1995, Mechanisms of adhesion between axons and glial cells. In: The Axon: Structure, Function and Pathophysiology. Waxman, Kocsis, Stys Eds. Chapter 8, pp. 164–184.

    Google Scholar 

  • Sanderson, M.J., 1995, Intercellular calcium waves mediated by inositol trisphosphate. Ciba. Found Symp. 188: 175–189; discussion 189-194.

    PubMed  CAS  Google Scholar 

  • Scemes E., Dermietzel R., and Spray, D.C., 1998, Calcium waves between astrocytes from Cx43 knockout mice. Glia. 24: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Scemes, E. and Spray, D.C., 1998, Increased intercellular communication in mouse astrocytes exposed to hyposmotic shocks. Glia. 24: 74–84.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S.S., 1997, Molecular genetics of demyelinaton: new wrinkles on an old Membrane. Neuron. 18: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S.S., 1996, Molecular specializations at nodes and paranodes in peripheral nerve. Microscopy Res. And Techn. 34: 452–461.

    Article  CAS  Google Scholar 

  • Scherer, S.S., Deschenes, S.M., Xu, Y.T., Grinspan, J.B., Fischbeck, K.H., and Paul, D.L., 1995, Connexin32 is a myelin-related protein in the PNS and CNS. J. Neurosci. 12: 8281–8294.

    Google Scholar 

  • Scherer, S.S., Xu, Y.T., Nelles E., Fischbeck K., Willecke K., and Bone, L.J., 1998, Connexin32-null mice develop demyelinating peripheral neuropathy. Glia. 24: 8–20.

    Article  PubMed  CAS  Google Scholar 

  • Sneyd, J.B., Wetton, A.C., Charles, A.C., and Sanderson, M.J., 1995, Intercellular calcium waves mediated by the diffusion of inositol triphosphate: a two-dimensional model. Am. J. Physiol. 268: C1537–1545.

    Google Scholar 

  • Sohl G., Degen J., Teubner B., and Willecke, K., 1998, The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett. 428: 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., 1996, Physiological properties of gap junction channels in the nervous system. In: Gap Junctions in the Nervous System, D.C. Spray and R. Dermietzel, eds. R.G. Landes Company, Georgetown, TX, pp. 39–59.

    Google Scholar 

  • Spray, D.C. and Bennett, M.V.L., 1985, Physiology and pharmacology of gap junctions. Ann. Rev. Physiol. 47: 281–303.

    Article  CAS  Google Scholar 

  • Spray, D.C. and Burt, J.M., 1990, Structure-activity relations of the cardiac gap junction channel. Amer. J. Physiol. 258: C195-C205.

    Google Scholar 

  • Spray, D.C. and Dermietzel, R., 1995, X-linked dominant Charcot-Marie-Tooth disease and other potential gap-junction diseases of the nervous system. Trends Neurosci. 18: 256–262.

    PubMed  CAS  Google Scholar 

  • Spray, D.C., Ginzberg, R.D., Morales, E.A., Gartmaitan Z., and Arias, I.M., 1986, Electrophysiological properties of gap junctions between dissociated pairs of rat hepatocytes. J. Cell Biol. 103: 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., Harris, A.L., and Bennett, M.V.L., 1981, Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211: 712–715.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C. and Scemes, E., 1998, Effects of intracellular pH (and Ca2+) on gap junction channels. In: pH and Brain Function. Kaila and Ransom, Ed., Wiley Liss, Inc., N.Y., pp. 477–489.

    Google Scholar 

  • Spray, D.C., Vink, M.J., Scemes E., Suadicani, S.O., Fishman, G.I., and Dermietzel, R., 1998, Characteristics of coupling in cardiac myocytes and CNS astrocytes cultured from wildtype and Cx43-null mice. IOS Press, Netherlands, pp. 281–285.

    Google Scholar 

  • Subak-Sharpe H., Burk, R.R., and Pitts, J.D., 1969, Metabolic co-operation between biochemically marked mammalian cells in tissue culture. 50 J. Cell Sci. 4: 353–367.

    CAS  Google Scholar 

  • Sykova, E., 1997, The extracellular space in the CNS: Its regulation, volume and geometry in normal and pathological neuronal function. The Neuroscientist 3: 28–41.

    Google Scholar 

  • Tabernero A., Giaume C., and Medina, J.M., 1996, Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia. 16: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi, M., 1990, Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59: 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi, M., 1991, Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Theriault E., Frankenstein, U.N., Hertzberg, E.L., and Nagy, J.I., 1997, Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J. Comp. Neurol. 382: 199–214.

    Article  PubMed  CAS  Google Scholar 

  • Tombaugh, G.C. and Somjen, G.G., 1996, Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J. Physiol. (Lond.) 493 (Pt 3): 719–732.

    Google Scholar 

  • Tombaugh, G.C. and Somjen, G.G., 1998, pH modulation of voltage-gated ion channels. In: pH and Brain Function, K. Kaila and B.R. Ransom, eds., Wiley-Liss, Inc., N.Y., pp. 395–41

    Google Scholar 

  • Toyofuku T., Yuki M., Otsu K., Kuzuya T., Hori M., and Tada, M., 1998, Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J. Biol. Chem. 273: 12725–12731.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Tsukita S., and Nagafuchi, A., 1990, The undercoat of adhernes junctions: a key specialized structure in organogenesis and carcinogenesis. Cell Struct. Fund. 15: 7–12.

    Article  CAS  Google Scholar 

  • Veenstra, R.D., 1996, Size and selectivity of gap junction channels formed from different connexins. J. Bioenerg. Biomembr. 28: 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Veenstra, R.D., Wang, H.Z., Beblo, D.A., Chilton, M.G., Harris, A.L., Beyer, E.C., and Brink, P.R., 1995, Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ. Res. 77: 1156–1165.

    Article  PubMed  CAS  Google Scholar 

  • Veenstra, R.D., Wang, H.Z., Beyer, E.C., and Brink, P.R., 1994, Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ. Res. 75: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Vrionis, F.D., Wu, J.K., Qi P., Waltzman M., Cherington V., and Spray, D.C., 1997, The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions. Gene. Ther. 4: 577–585.

    Article  PubMed  CAS  Google Scholar 

  • White, R.L., Doeller, J.E., Verselis, V.K., and Wittenberg, B.A., 1990, Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca2+. J. Gen. Physiol. 95: 1061–1075.

    Article  PubMed  CAS  Google Scholar 

  • White, T.W., Paul, D.L., Goodenough, D.A., and Bruzzone, R., 1995, Functional analysis of selective interactions among rodent connexins. Mol. Biol. Cell 6: 459–470.

    PubMed  CAS  Google Scholar 

  • Wolff, J.R., Stuke K., Missler M., Tytko H., Schwarz P., Rohlmann A., and Chao, T.I., 1998, Autocellular coupling by gap junctions in cultured astrocytes: a new view on cellular autoregulation during process formation. Glia. 24: 121–140.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T., Ochalski A., Hertzberg, E.L., and Nagy, J.I., 1990, On the organization of astrocytic gap junction in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J. Comp. Neurol. 302: 853–883.

    Article  PubMed  CAS  Google Scholar 

  • Zahs, K.R., 1998, Heterotypic coupling between glial cells of the mammalian central nervous system. Glia. 24: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S., Fort A., and Spray, D.C., 1999, Characteristics of gap junction channels in Schwann cells from wildtype and conexin-null mice. New York Academy of Science, in press.

    Google Scholar 

  • Zhao, S. and Spray, D.C., 1998, Localization of Cx26, Cx32 and Cx43 in meylinating Schwann cells of mouse sciatic nerve during postnatal development. In Gap Junctions, R. Werner, Ed., ISO Press, pp. 198–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spray, D.C., Duffy, H.S., Scemes, E. (1999). Gap Junctions in Glia. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics