Skip to main content

Effects of Organic Matter, Iron and Aluminium on Soil Structural Stability

  • Chapter

Abstract

Soil structure is the result of the elementary soil particles being bound together at certain points on their surface by cementing substances, such as organic matter (OM), iron and aluminium oxides, colloidal silica or calcium carbonate (Baver et al., 1972). The relative importance of these stabilizing agents depends on their nature and abundance in the soil. Although there is a general agreement on the fundamental role that OM, Fe and Al play in the formation and stabilization of soil aggregates, some questions deserve further research, namely, the opposing effects ascribed to OM, which sometimes increases aggregate stability (Emerson, 1983; Bartoli et al, 1992; Tarchitzky et al., 1993) and sometimes favours dispersion (Visser and Caillier, 1988), the forms of Fe and Al implicated (Arduino et al., 1989; Colombo and Torrent, 1991), the mechanisms of their aggregative effect or which of the two metals is the most efficient stabilizer (Bartoli et al., 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arduino, E.; Barberis, E. and Boero, V., 1989. Iron oxides and particle aggregation in B horizons of some Italian soils. Geoderma, 45, 319–329.

    Article  Google Scholar 

  • Arias, M, Barrai, M.T. and Diaz-Fierros, F., 1995. Effects of iron and aluminium oxides on the colloidal and surface properties of kaolin. Clays and Clay Minerals, 43, 406–416.

    Article  CAS  Google Scholar 

  • Arias, M., Barrai, M.T. and Diaz-Fierros, F., 1996. Effects of associations between humic acids and iron or aluminium on the flocculation and aggregation of kaolin and quartz. European Journal of Soil Science, 47, 335–343.

    Article  CAS  Google Scholar 

  • Arias, M., López, E. and Barrai, M.T., 1997. Comparison of functions for evaluating the effect of Fe and Al oxides on the particle size distribution of kaolin and quartz. Clay Minerals, 32, 3–11.

    Article  CAS  Google Scholar 

  • Bartoli, F.; Philippy, R. and Burtin, G., 1988. Aggregation in soils with small amounts of swelling clays. I. Aggregate stability. J. Soil Sci., 39, 593–616.

    Article  CAS  Google Scholar 

  • Bartoli, F.; Burtin, G. and Guérif, J., 1992. Influence of organic matter on aggregation in Oxisols rich in gibbsite or in goethite. II. Clay dispersion, aggregate strength and water-stability. Geoderma, 54, 259–21 A.

    Article  CAS  Google Scholar 

  • Bascomb, C.L., 1968. Distribution of pyrophosphate-extractable iron and organic carbon un soils of various groups. J. Soil Sci., 19, 251–268.

    Article  CAS  Google Scholar 

  • Baver, L.D.; Gardner, W.H. and Gardner, W.R., 1972. Soil Physics. 4th ed. John Wiley, New York.

    Google Scholar 

  • Benito, E. and Diaz-Fierros, F., 1989. Estudio de los principales factores que intervienen en la estabilidad estructural de los suelos de Galicia. Anales de Edafologia y Agrobiologia, 48, 229–253.

    Google Scholar 

  • Benito, E. and DÍaz-Fierros, F., 1992. Effects of cropping on the structural stability of soils rich in organic matter. Soil and Tillage Research, 23, 153–161.

    Article  Google Scholar 

  • Borggaard, O.K., 1985. Organic matter and silicon in relation to the crystallinity of soil iron oxides. Acta Agric. Scand., 35, 398–406.

    Article  CAS  Google Scholar 

  • Colombo, C. and Torrent, J., 1991. Relationships between aggregation and iron oxides in Terra Rossa from southern Italy. Catena, 18, 51–59.

    Article  CAS  Google Scholar 

  • Edwards, A.P. and Bremner, J.M., 1967. Microaggregates in soils. Journal of Soil Science, 18, 64–73.

    Article  CAS  Google Scholar 

  • Emerson, W.W., 1983. Inter-particle bonding. In: Soils: An Australian Viewpoint, pp. 477–498. Division of Soils, CSIRO, Melbourne.

    Google Scholar 

  • FAO, Food and Agriculture organization of the United Nations, 1988. Soil map of the world. Revised legend. World Soil Resources Report 6D, FAO, Roma.

    Google Scholar 

  • Guitián, F. and Carballas, T., 1976. Técnicas de análisis de suelos. Pico Sacro (ed). Santiago de Compostela, España.

    Google Scholar 

  • Hénin, S. and Monnier, G., 1956. Evaluation de la stabilité de la structure du sol. C.R.Vle Congrès AIS, Paris, 49–52.

    Google Scholar 

  • Holmgrem, G.G.S., 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Amer. Proa, 31,210–211.

    Article  Google Scholar 

  • McKeague, J.A., 1967. An evaluation of 0.1 N pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian Journal of Soil Science, 46, 13–22.

    Article  Google Scholar 

  • Mehra, O.P. and Jackson, M.L., 1960. Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. 7th Nat. Conf. Clay Minerals, 317–327.

    Google Scholar 

  • Monnier, G. and Stengel, P., 1982. Structure et état physique du sol. Techn. Agri. Fasc. 1140.

    Google Scholar 

  • Mortland, M.M., 1970. Clay-organic complexes and interactions. Advances in Agronomy, 22, 75–117.

    Article  CAS  Google Scholar 

  • Pauwels, J.M., Gabriels, D. and Eeckout, G., 1976. Evaluation of different criteria to assess the stability of the soil surface. Mededelingen van de Landbouwhogeschool Gent, 41, 135–139.

    Google Scholar 

  • Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammonium oxalat-Lösung. Z. Pflanzenernäh Dúng. Bodenk, 105, 194–202.

    Article  CAS  Google Scholar 

  • Tarchitzky, J., Chen, Y. and Banin, A., 1993. Humic substances and pH effects on sodium-and calcium-montmorillonite flocculation and dispersion. Soil Sci. Soc. A. J., 57, 367–372.

    Article  CAS  Google Scholar 

  • Tisdall, J.M. and Oades, J.M., 1982. The effect of crop rotation on aggregation in a red-brown earth. Australian Journal of Soil Research, 18, 423–434.

    Article  Google Scholar 

  • Visser, S.A. and Caillier, M., 1988. Observations on the dispersion and aggregation of clays by humic substances. I. Dispersive effects of humic acids. Geoderma, 42, 331–337.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arias, M., Barral, M.T., Diaz-Fierros, F. (1999). Effects of Organic Matter, Iron and Aluminium on Soil Structural Stability. In: Berthelin, J., Huang, P.M., Bollag, JM., Andreux, F. (eds) Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4683-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4683-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7120-5

  • Online ISBN: 978-1-4615-4683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics