Skip to main content

Abstract

Nitrogen availability in soils plays an important role for the productivity of agricultural systems. After entering the soil, material of biogenic origin experiences decay and microbial reworking. During these processes, the labile compounds are quickly mineralized into inorganic nitrogen forms, directly available for the production of new biomass. The more stable compounds and metabolic products accumulate to form the refractory organic pool of soils (Kelly and Stevenson, 1996). Their nitrogen will be sequestered from the overall nitrogen cycle and therefore from bioproductivity over a expended time range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balesdent, J., A. Mariotti and B. Guillet, 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol. Biochem., 19, 25–30.

    Article  CAS  Google Scholar 

  • Christensen B.T., 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1–90.

    Article  Google Scholar 

  • Christensen, B.T. and S. Bech-Andersen, 1989. Influence of straw disposal on distribution of amino acids in soil particle size fractions. Soil Biol. Biochem, 21, 35–40.

    Article  CAS  Google Scholar 

  • FAO, Food and Agriculture Organization of the United Nations (Ed.) 1990. FAO-Unesco. Soil Map of the world, Revised Legend. Rome.

    Google Scholar 

  • Kelly, K.R. and F.J. Stevenson, 1996.Organic forms of nitrogen. In: A. Piccolo (Editor), Humic Substances in Terrestrial Ecosystems. Elsevier Science, pp. 407–427.

    Google Scholar 

  • Knicke, r H. and H.-D. Lüdemann, 1995. N-15 and C-13 CPMAS and solution HR NMR studies on the chemical modifications of N-15 enriched plant material during 600 days of microbial degradation. Org. Geochem., 23, 329–341.

    Article  Google Scholar 

  • Knicker, H. 1993. Quantitative 15N-und13C-CPMAS-Festkörper-und 15N-Flüssigkeits-NMR-Spektroskopie an Pflanzenkomposten und natürlichen Böden. Dissertation, University of Regensburg, Germany.

    Google Scholar 

  • Knicker, H., R. Fründ and H.-D. Lüdemann, 1993. The chemical nature of nitrogen in native soil organic matter. Naturwissenschaften, 80, 219–221.

    Article  CAS  Google Scholar 

  • Knicker, H., G. Almendros, F.J. González-Vila, H.-D. Lüdemann and F. Martin, 1995. C and15 N NMR analysis of some fungal melanins in comparison with soil organic matter. Org. Geochem., 23. 1023–1028.

    Article  CAS  Google Scholar 

  • Knicker, H., A.W. Scaroni and P.G. Hatcher, 1996. C and15 N NMR spectroscopic investigation on the formation of fossil algal residues. Org. Geochem., 24, 661–669.

    Article  CAS  Google Scholar 

  • Kögel-Knabner, I., 1995. Composition of soil organic matter. In: P. Nannipieri, K. Alef (Editors), Methods in Applied Soil Microbiology and Biochemistry. Academic Press, pp. 66–78.

    Google Scholar 

  • Lichtfouse, É., C. Chenu an F. Baudin, 1996. Resistant ultralaminae in soils. Org. Geochem. 25, 263–265.

    Article  CAS  Google Scholar 

  • Magid, J., A. Gorissen and K.E. Giller, 1996. In search of the elusive “active” fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously C-labelled plant materials. Soil Biol. Biochem., 28, 89–99.

    Article  CAS  Google Scholar 

  • Marshmann, N.A. and K.C. Marshall, 1981. Bacterial growth on proteins in the presence of clay minerals. Soil Biol. Biochem., 13, 127–134.

    Article  Google Scholar 

  • Martin, G.J., M.L. Martin and J.-P. Gouesnard, J.-P., 1981. N NMR Spectroscopy. In: P. Diehl, E. Fluck, R. Kosfeld (Editors). NMR Basic Principles and Progress 18, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Mayer, L.M, S.A. Macko and L. Cammen, 1988. Provenance, concentrations and nature of sedimentary organic nitrogen in the Gulf of Maine. Mar. Chem., 25, 291–304.

    Article  CAS  Google Scholar 

  • Mayer, L.M., 1994a. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim, 58, 1271–1284.

    Article  CAS  Google Scholar 

  • Mayer, L.M., 1994b. Relationship between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol., 114, 347–36.

    Article  CAS  Google Scholar 

  • Schaefer, J. and E.O. Stejskal, 1976. Carbon-13 nuclear magnetic resonance of polymers spinning at magic angle. J. Am. Chem. Soc, 98, 1031–1032.

    Article  CAS  Google Scholar 

  • Schmidt, M.W.I., H. Knicker, P.G. Hatcher and I. Kögel-Knabner, 1996. Impact of brown coal dust on a soil and its size fractions-chemical and spectroscopic studies. Org. Geochem., 25, 29–39.

    Article  CAS  Google Scholar 

  • Schmidt, M.W.I., H. Knicker, P.G. Hatcher and I. Kögel-Knabner, 1997. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, partice size fractions and organic material by treatment with 10 % hydrofluoric acid. Eur. J. Soil Sci., 48, 319–328.

    Article  Google Scholar 

  • Schulten, H.-R., P. Leinweber and C. Sorge, 1993. Composition of organic matter in particle-size fractions of an agricultural soil. J. Soil Sci., 44, 677–691.

    Article  Google Scholar 

  • Skjemstad, J.O., P. Clarke, J.A. Taylor, J.M. Oades and R.H. Newman, (1994). The removal of magnetic materials from surface soils. A solid-state 13C CP/MAS n.m.r. study. Aust. J. Soil Res., 32, 1215–1229.

    Article  CAS  Google Scholar 

  • Witanowski, M., L. Stefaniak and G.A. Webb, 1993. Nitrogen NMR spectroscopy. In: G. Webb (Editor), Annual Reports on NMR Spectroscopy 25, Academic Press, London.

    Google Scholar 

  • Zelibor, J.L., Jr., L. Romankiw, P.G. Hatcher and R.R. Colwell, 1988. Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by 13C nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol., 54, 1051–1060.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knicker, H., Schmidt, M.W.I., Kögel-Knabner, I. (1999). The Structure of Organic Nitrogen in Particle Size Fractions Determined by 15N CPMAS NMR. In: Berthelin, J., Huang, P.M., Bollag, JM., Andreux, F. (eds) Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4683-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4683-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7120-5

  • Online ISBN: 978-1-4615-4683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics