Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 43))

  • 318 Accesses

Abstract

The methodology suggested in this book is based on three mathematical tools — optimal control, combinatorics and mathematical programming — which are traditionally related to separate areas of research and application. The methodology involves, first, investigating a continuous-time problem with the aid of the maximum principle and then reducing it to a discrete combinatorial or mathematical programming problem solvable in polynomial time. The following sections present selected combinatorics, the maximum principle and a constructive approach for integrating both mathematical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliograghy

  • Arrow, K.J. and S. Karlin, 1958, “Smooth Production Plans” in Studies in the Mathematical Theory of Inventory and Production, Stanford University Press, pp. 70–85.

    Google Scholar 

  • Blazewicz, J., K.H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, 1996, Scheduling Computer and Manufacturing Processes, Springer-Verlag.

    Google Scholar 

  • Bollen, N.P.B., 1999, “Real Options and Product Life Cycles”, Management Science, 45(5), pp. 670–684.

    Article  Google Scholar 

  • Bollen, N.P.B., 1999, “Real Options and Product Life Cycles”, Management Science, 45(5), pp. 670–684. Bryson, A.E. and J.Y-C. Ho, 1975, Applied Optimal Control, Hemisphere Publishing Corporation, Washington. Burden, R.L. and J.D. Fares, 1989, Numerical Analysis, PWS-KENT, Boston.

    Google Scholar 

  • Collatz, L., 1986, Differential Equations: an Introduction with Applications, Wiley, Chichester.

    Google Scholar 

  • Dubovitsky, A.Y. and A.A. Milyutin, 1981, “Theory of the Maximum Principle” in Methods of Theory of Extremum Problems in Economy, V.L. Levin, ed., Nauka, Moscow, 6–47 (in Russian).

    Google Scholar 

  • Gershwin, S., 1994, Manufacturing Systems Engineering, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gohberg, L P. Lancaster and L. Rodman, 1982, Matrix Polynomials, Academic Press, NY.

    Google Scholar 

  • Graves S.C. et al. (Eds.), 1993, Handbooks in OR and MS, Elsevier, Amsterdam.

    Google Scholar 

  • Hartl, R.F., S.P. Sethi and R.G.Vickson, 1995, “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37(2), 181–218.

    Article  Google Scholar 

  • Holt, C.C., F. Modigliani, J.F. Muth, and H.A. Simon, 1960, Planning Production, Inventories and Work Force, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Maimon, O., E. Khmelnitsky and K. Kogan, 1998, Optimal Flow Control in Manufacturing Systems: Production Planning and Scheduling, Kluwer Academic Publishers, Boston.

    Book  Google Scholar 

  • Milyutin, A.A., N. Osmolovsky, S. Chukanov and A. Ilyutovich, 1993, Optimal Control in Linear Systems, Nauka, Moscow (in Russian).

    Google Scholar 

  • Neapolitan, R. and K. Naimipour, 1996, Foundations ofAlgorithms, Heath, Lexington, MA.

    Google Scholar 

  • Ostwald, P.F., 1974, Cost Estimating for Engineering and Management, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Pinedo, M., 1995, Scheduling: Theory, Algorithms and Systems, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Sethi, S.P. and Q., Zhang, 1995, Hierarchical Decision Making in Stochastic Manufacturing Systems, Birkhauser, Boston, MA.

    Google Scholar 

  • Sethi, S.P., M.I. Taksar and Q. Zhang, 1992, “Capacity and Production Decisions in Stochastic Manufacturing Systems: an Asymptotic Optimal Hierarchical Approach”, Production and Operations Management, 1(4), pp. 367–392.

    Article  Google Scholar 

  • Van Trees H.L., 1968, Detection, Estimation and Modulation Theory, Part I, John Wiley&Sons.

    Google Scholar 

  • Wagner, H.M., and T.M. Whitin, 1958, “A dynamic version of the economic lot size model”, Management Science, 5, pp. 89–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kogan, K., Khmelnitsky, E. (2000). Mathematical Background. In: Scheduling: Control-Based Theory and Polynomial-Time Algorithms. Applied Optimization, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4675-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4675-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7116-8

  • Online ISBN: 978-1-4615-4675-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics