Skip to main content

Oxidation-Sensitive Transcription and Gene Expression in Atherosclerosis

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

Historically, most research into the role of oxidative stress and reactive oxygen species (ROS) in inflammatory diseases such as rheumatoid arthritis, pulmonary emphysema, neurodegenerative disorders and atherosclerosis has focused on the putative role of ROS as cellular damaging agents through the potential toxic oxidative modification of macromolecules such as proteins, lipids and DNA and on the cytotoxicity of free radicals and their reaction products (1). In this context, ROS have been viewed as playing a destructive role in biology. Although this may be true for high concentrations of ROS, many cell types such as fibroblasts, endothelial cells and smooth muscle cells have been shown to produce ROS at relatively low levels where they play a role as intracellular messenger molecules. In this context, ROS serve as physiological second messengers to regulate signal transduction pathways that ultimately control gene expression and post-translational modifications of proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell B, Gutteridge JMC. The importance of free radicals and catalytic metal ions in human disease. Mol Asp Med. 1985;8:89.

    Article  CAS  Google Scholar 

  2. Medford RM. Antioxidants and endothelial expression of VCAM-1: A molecular paradigm for atherosclerosis. In: Gallo LL, ed. Cardiovascular Disease. New York, NY: Plenum Press; 1995;2:121.

    Google Scholar 

  3. Ross R. Atherosclerosis — an inflammatory disease. New Engl J Med. 1999;340:l15.

    Google Scholar 

  4. Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and atherosclerotic heart disease. New Engl J Med. 1997;337:408.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R. Cell biology of atherosclerosis. Ann Rev Physiol. 1995;57:791.

    Article  CAS  Google Scholar 

  6. Gibbons GH, Dzau VJ. Molecular therapies for vascular diseases. Science. 1996;272:689.

    Article  PubMed  CAS  Google Scholar 

  7. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915.

    Article  PubMed  CAS  Google Scholar 

  8. Alexander RW. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995;25:155.

    Article  PubMed  CAS  Google Scholar 

  9. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866.

    Article  PubMed  CAS  Google Scholar 

  10. Weber C, Erl W, Pietsch A, Strobel M, Ziegler-Heitbrock HW, Weber PC. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-κB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb. 1994;14:1665.

    Article  PubMed  CAS  Google Scholar 

  11. Satriano JA, Shuldiner M, Hora K, Xing Y, Shan Z, Schlondorff D. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest. 1993;92:1564.

    Article  PubMed  CAS  Google Scholar 

  12. Winyard PG, Blake DR. Antioxidants, redox-regulated transcription factors, and inflammation. Adv in Pharm. 1997;38:403.

    Article  CAS  Google Scholar 

  13. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405.

    Article  PubMed  CAS  Google Scholar 

  14. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997;11:118.

    PubMed  CAS  Google Scholar 

  15. Chen XL, Medford RM. Oxidation-reduction sensitive regulation of inflammtory gene expression in the vasculature. In: Pearson JD, ed. Vascular adhesionmolecules and inflammation. Basel, Switzerland: Birkhauser Press; 1999 (in press).

    Google Scholar 

  16. Griendling KK, Minieri CA, Ollerenshw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141.

    Article  PubMed  CAS  Google Scholar 

  17. Chen XL, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res. 1998;83:952.

    Article  PubMed  CAS  Google Scholar 

  18. Graier WF, Simecek S, Kukovetz WR, Kostner GM. High D-glucose-induced change in endothelial Ca2+ /EDRF signaling are due to generation of Superoxide anions. Diabetes. 1996;45:1386.

    Article  PubMed  CAS  Google Scholar 

  19. Maziere C, Auclair M, Rose-Robert F, Leflon P, Maziere JC. Glucose-enriched medium enhances cell-mediated low dendity lipoprotein peroxidation. FEBS lett. 1995;363:277.

    Article  PubMed  CAS  Google Scholar 

  20. Pieper GM, Riaz-ul-Haq. Activation of nuclear factor-κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiolvasc Pharm. 1997;30:528.

    Article  CAS  Google Scholar 

  21. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315.

    Article  PubMed  CAS  Google Scholar 

  22. Schimidt AM, Hori O, Chen JX, Li JF, Crandall JZ, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395.

    Article  Google Scholar 

  23. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinksy D, Stern D. Enhanced cellular oxidative stress by the interaction of advanced glycation end products with their receptors/binding protein. J Biol Chem. 1994;269:9889.

    PubMed  CAS  Google Scholar 

  24. Bierhaus AS, Chevion M, Chevion M, Hofmann P, Quehenberg T, Luther IT, Berentstein E, Tritschler H, Muller M, Wajl R, Ziegler R, Nowroth PP. Advanced glycation end productinduced activation of NF-κB is suppressed by ?-lipoic acid in cultured endothelial cells. Diabetes. 1997;46:1481.

    Article  PubMed  CAS  Google Scholar 

  25. Lehr HA, Becker M, Marklund SL, Hubner C, Arfors KE, Kohlschutter A, Messmer K. Superoxide-dependent stimulation of leukocyte adhesion by oxidatively modified LDL in vivo. Arterioscler Thromb. 1992;12:824.

    Article  PubMed  CAS  Google Scholar 

  26. Witzum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785.

    Article  Google Scholar 

  27. Cominacini L, Ulisse G, Pasini AF, Davoli A, Campagnola M, Contessi GB, Pastorino A, Cascio VL. Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical endothelial cells. Free Rad Bio Med 1997;22:117.

    Article  CAS  Google Scholar 

  28. Khan BR, Parthasarathy SS, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augument cytokine-activated vascular cell adhesion molecule-1 gene expression in human endothelial cells. J Clin Invest. 1995;95:1262.

    Article  PubMed  CAS  Google Scholar 

  29. Cominacini L, Garbin U, Fratta PA, Paulon T, Davoli A, Campagnola M, Marchi E, Pastorino AM, Gaviraghi G, Lo Cascio V. Lacidipine inhibits the activation of the transcription factor NF-κB and the expression of adhesion molecules induced by pro-oxidant signals on endothelial cells. J Hypertens. 1997;15:1633.

    Article  PubMed  CAS  Google Scholar 

  30. Maziere C, Auclair M, Djavaheri-Mergny M, Packer L, Maziere JC. Oxidized low density lipoprotein induces activation of the transcription factor NF-κB in fibroblasts, endothelial and smooth muscle cells. Biochem Mol Biol Int. 1996;39:1201.

    PubMed  CAS  Google Scholar 

  31. Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltschmidt C, Neumann FJ, Mackman N, Baeurele PA, Walli AK, Neumeier D. Dysregulation of monocytic nuclear factor-κB by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol. 1997;17:1901.

    Article  PubMed  CAS  Google Scholar 

  32. Henriksson P, Hamberg M, Diczfalusy U. Formation of 15-HETE as a major hydroxyeicosatetraenoic acid in the atherosclerotic vessel wall. Biochim Biophys Acta. 1985;834:272.

    Article  PubMed  CAS  Google Scholar 

  33. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Sarkioja T, Witztum JL, Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions: 15-lipoxygenase and acetyl LDL receptor mRNA colocalize with oxidation-specific lipid-protein adducts. J Clin Invest. 1991;87:1146.

    Article  PubMed  CAS  Google Scholar 

  34. Wolle J, Welch KA, Devall LJ, Cornicelli JA, Saxena U. Transient overexpression of human 15-lipoxygenase in aortic endothelial cells enhances tumor necrosis factor-induced vascular cell adhesion molecule-1 gene expression. Biochem Biophy Res Com. 1996;220:310.

    Article  CAS  Google Scholar 

  35. Lee S, Felts KA, Parry GC, Armacost LM, Cobb RR. Inhibition of 5-lipoxygenase blocks IL-1 β-induced vascular adhesion molecule-1 gene expression in human endothelial cells. J Immunol. 1997;158:3401.

    PubMed  CAS  Google Scholar 

  36. Nerem RM. Hemodynamics and the vascular endothelium. J Biomech Eng. 1993;115:510.

    Article  PubMed  CAS  Google Scholar 

  37. Chiu JJ, Wang KL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. J Biomech Eng. 1998;120:2.

    Article  PubMed  CAS  Google Scholar 

  38. Laurindo FRM, de Almedia Pedro M, Barbeiro HV, Pileggi F, Carvalho MHC, Augusto O, Lemos da Luz P. Vascular free radical release. Ex vivo and in vivo evidence for a flowdependent endothelial mechanism. Circ Res. 1994;74:700.

    CAS  Google Scholar 

  39. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state. Role of a superoxide-production and NADH oxidase. Circ Res. 1998;82:1094.

    Article  PubMed  Google Scholar 

  40. Hsieh HJ, Cheng CC, Wu ST, Chiu JJ, Wung BS, Wang DL. Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-Fos expression. J Cell Physiol. 1998;175:156.

    Article  PubMed  CAS  Google Scholar 

  41. Chiu JJ, Wung BS, Shyy JYJ, Hsieh HJ, Wang DL. Reactive oxygen species are involved in shear stress-induced intercelluar adhesion molecule-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol. 1997;17:3570.

    Article  PubMed  CAS  Google Scholar 

  42. Wu AY, Yan C, Berk BC. Fluid shear stress generates oxidative stress in endothelial cells as assayed by aconitase. Circulation. 1998;98:137. (Abst).

    Article  Google Scholar 

  43. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn Superoxide dismutase in human aortic endothelial cells. Circ Res. 1996;79:32.

    Article  PubMed  CAS  Google Scholar 

  44. Topper JN, Cai J, Falb D, Gimbrone MA. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese Superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA. 1996;93:10417.

    Article  PubMed  CAS  Google Scholar 

  45. Tsao PS, Buitrago R, Chan JR, Cooke JP. Fluid flow inhibits endothelial adhesiveness, nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996;94:1682.

    Article  PubMed  CAS  Google Scholar 

  46. Medford R, Erickson S, Chappell D, Offermann M, Nerem R, Alexander R. Laminar shear stress and redox sensitive regulation of human vascular endothelial cell VCAM-1 gene expression. Circulation. 1994;909(suppl I):1–83. (Abstr).

    Google Scholar 

  47. Pohl U, Holtz J, Busse R, Bassenge E. Crucial role of endothelium in the vasodilator response to increase flow in vivo. Hypertension. 1986;8:37.

    Article  PubMed  CAS  Google Scholar 

  48. Cooke JP, Rossitch E, Andon N, Loscalzo J, Dzau VJ. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991;88:1663.

    Article  PubMed  CAS  Google Scholar 

  49. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269:C1371.

    PubMed  CAS  Google Scholar 

  50. Ueba H, Poppa V, Suero J, Okuda M, Berk BC. c-Src is required for flow-stimulated NO production in bovine aortic endothelial cells. Circulation. 1998;98:1313. (Abst.)

    Google Scholar 

  51. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of Superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994;266:H2568.

    PubMed  CAS  Google Scholar 

  52. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumor necrosis factor alpha activates a p22 phox-based NADH oxidase in vascular smooth muscle. Biochem J. 1998;329:653.

    PubMed  Google Scholar 

  53. Matsubara T, Ziff M: Increased Superoxide anion release from human endothelial cells in response to cytokines. J. Immunol. 1986; 137:3295.

    PubMed  CAS  Google Scholar 

  54. Tummala PE, Chen X, Medford RM. Differential regulation of oxidation sensitive VCAM-1 gene expression and NF-κB activation by flavin binding proteins. Circulation 1996;94:1–45 (Abst.)

    Article  Google Scholar 

  55. Chen XL, Tummala PE, Laursen JB, Harrison DG, Alexander RW, Medford RM. Direct activation of aortic monocyte chemoattractant protein-1 gene expression in vivo and ex vivo by angiotensin II in experimental hypertension. Circulation. 1997;96:1-285. (Abst.)

    Article  Google Scholar 

  56. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109.

    PubMed  CAS  Google Scholar 

  57. White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, Tarpey MM. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA. 1994;91:1044.

    Article  PubMed  CAS  Google Scholar 

  58. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA. 1990;87:1620.

    Article  PubMed  CAS  Google Scholar 

  59. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endotheliumderived relaxing factor. Am J Physiol. 1986;250:H822.

    PubMed  CAS  Google Scholar 

  60. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature (Lond) 1986;320:454.

    Article  CAS  Google Scholar 

  61. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA. 1996;93:9114.

    Article  PubMed  CAS  Google Scholar 

  62. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA, Shin WS, Liao JK. Nitric oxide decreases cytokine-induced endothelial activation: nitric oxide selectively reduces endothelial expression of adhesion molecules and pro-inflammatory cytokines. J Clin Invest. 1995;96:60.

    Article  PubMed  Google Scholar 

  63. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997;96:934.

    Article  PubMed  CAS  Google Scholar 

  64. Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells, Circ Res. 1995;76:980.

    Article  PubMed  CAS  Google Scholar 

  65. Peng HB, Libby P, Liao JK. Induction and stabilization of IκB-α by nitric oxide mediates inhibition of NF-κB. J Biol Chem. 1995;270:14214.

    Article  PubMed  CAS  Google Scholar 

  66. Hogg N, Kalyanaramer B, Joseph J, Struck A, Parthasarathy S: Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenes is. FEBS Lett. 1993; 334:170.

    Article  PubMed  CAS  Google Scholar 

  67. Rubbo H, Darley UV, Freeman BA. Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol. 1996;9:809.

    Article  PubMed  CAS  Google Scholar 

  68. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Rad Biol Med. 1997;22:269.

    Article  PubMed  CAS  Google Scholar 

  69. Palmer HJ, Paulson KE Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutrition Reviews. 1997;55:353.

    Article  PubMed  CAS  Google Scholar 

  70. Schulze-Osthoff K, Bauer MK, Vogt M, Wesselborg S. Oxidative stress and signal transduction. Internat J Vita Nutr Res. 1997;67:336.

    CAS  Google Scholar 

  71. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709.

    PubMed  CAS  Google Scholar 

  72. Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Rad Biol Med. 1996;21:335.

    Article  PubMed  CAS  Google Scholar 

  73. Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA. Role of nuclear factor-κB in atherogenesis. Exp Phys. 1997;82:297.

    CAS  Google Scholar 

  74. Karin M. Signal transduction and gene control. Curr Opin Cell Biol. 1991;3:467-473.

    Article  PubMed  CAS  Google Scholar 

  75. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta. 1991;1072:129.

    PubMed  CAS  Google Scholar 

  76. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988;54:541.

    Article  PubMed  CAS  Google Scholar 

  77. Crawford K, Zbinden I, Amstad P, Cerutti P. Oxidant stress induces the proto-oncogenes c-Fos and c-myc in mouse epidermal cells. Oncogene. 1988;3:27.

    CAS  Google Scholar 

  78. Shibanuma M, Kuroki T, Nose K. Induction of DNA replication and expression of protooncogenes c-myc and c-Fos in quiescent Balb/3T3 cells by xanthine/xanthine oxidase. Oncogene. 1988;3:17.

    CAS  Google Scholar 

  79. Devary Y, Gottilieb RA, Lau LF, Karin M. Rapid and preferential activation of the c-Jun gene during the mammalian UV response. Mol Cell Biol. 1991;11:2804.

    PubMed  CAS  Google Scholar 

  80. Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem. 1991;201:99.

    Article  PubMed  CAS  Google Scholar 

  81. Collart FR, Horio M, Huberman E. Heterogeneity in c-Jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide. Radiat Res. 1995;142:188.

    Article  PubMed  CAS  Google Scholar 

  82. Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K, Kuwano M: Involvement of the transcription factor NF-κB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol. 1996; 16:4231.

    PubMed  CAS  Google Scholar 

  83. Lin JH, Zhu Y, Liao HL, Kobari Y, Groszek L, Stemerman MB: Induction of vascular cell adhesion molecule-1 by low-density lipoprotein. Atherosclerosis. 1996; 127:185.

    Article  PubMed  CAS  Google Scholar 

  84. Maziere C, Kjavaheri-Mergny M, Frye-Fressart V, Kelattre J, Maziere JC. Copper and celloxidized low-density lipoprotein induces activator protein 1 in fibroblasts, endothelial and smooth muscle cells. FEBS Lett. 1997;409:351.

    Article  PubMed  CAS  Google Scholar 

  85. Ares MP, Kallin B, Eriksson P, Nilsson J. Oxidized LDL induces transcription factor activator protein-1 but inhibits activation of nuclear factor-κB in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1995;15:1584.

    Article  PubMed  CAS  Google Scholar 

  86. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res. 1992;70:593.

    Article  PubMed  CAS  Google Scholar 

  87. Ruef J, Rao GN, Li F, Bode C, Patterson C, Bhatnager A, Runge MS. Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal. Circulation. 1998;97:1071.

    Article  PubMed  CAS  Google Scholar 

  88. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res. 1997;81:1.

    Article  PubMed  CAS  Google Scholar 

  89. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB. H2O2 and tumor necrosis factor-alpha activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem. 1995;270:18966.

    Article  PubMed  CAS  Google Scholar 

  90. Rao GN, Lassegue B, Griendling KK, Alexander RW, Berk BC. Hydrogen peroxide-induced c-Fos expression is mediated by arachidonic acid release: Role of protein kinase C. Nucleic Acids Res. 1993;21:1259.

    Article  PubMed  CAS  Google Scholar 

  91. Rao GN, Lassegue B, Griendling KK, Alexander RW. Hydrogen peroxide stimulates transcription of c-Jun in vascular smooth muscle cells: Role of arachidonic acid. Oncogene. 1993;8:2759.

    PubMed  CAS  Google Scholar 

  92. Barchowsky A, Munro SR, Morana SJ, Vincenti MP, Treadwell M. Oxidant-sensitive and phosphorylation-dependent activation of NF-κB and AP-1 in endothelial cells. Am J Physiol. 1995;269:L829.

    PubMed  CAS  Google Scholar 

  93. Del Arco PG, Martinez-Martinez S, Calvo V, Armesilla AL, Redondo JM. Antioxidants and AP-1 activation: A brief overview. Immunobiol. 1997;198:273.

    Article  CAS  Google Scholar 

  94. Aragones J, Lopez-Rodriquez C, Corbi A, del Arco PG, Lopez-Cabrera M, de Landazuri MO, Redondo JM. Dithiocarbamates trigger differentiation and induction of CD11c gene through AP-1 in the myeloid lineage. J Biol Chem. 1996;271:10924.

    Article  PubMed  CAS  Google Scholar 

  95. Munoz C, Castellanos MC, Alfranca A, Vara A, Esteban MA, Redondo JM, de Landazuri MO. Transcriptional up-regulation of intracellular adhesion molecule-1 in human endothelial cells by the antioxidant Pyrrolidine dithiocarbamate involves the activation of activating protein-1. J Immunol. 1996;157:3587.

    PubMed  CAS  Google Scholar 

  96. Shau H, Huang AC, Faris M, Nazarian R, de Vellis J, Chen W. Thioredoxin peroxidase (natural killer enhancing factor) regulation of activator protein-1 function in endothelial cells. Biochem Biophys Res Commun. 1998;249:683.

    Article  PubMed  CAS  Google Scholar 

  97. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Ann Rev Immunol. 1996;12:141.

    Article  Google Scholar 

  98. Autieri MV, Uye TL, Ferstein GZ, Ohlstein E. Antisense oligonucleotide to the p65 subunit of NF-κB inhibits vascular smooth muscle cell adherence and proliferation and prevents neointima formation in rat carotid arteries. Biochem Biophys Res Commun. 1995;213:827.

    Article  PubMed  CAS  Google Scholar 

  99. Bellas RE, Lee JS, Sonenshein GE: Expression of a constitutive NF-κB-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J Clin Invest. 1995; 96:2521.

    Article  PubMed  CAS  Google Scholar 

  100. Maruyama I, Shigeta K, Miyahara H, Nakajima T, Shin H, Ide S, Kitajima I. Thrombin activates NF-κB through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis. Ann N Y Acad Sci. 1997;811:429.

    Article  PubMed  CAS  Google Scholar 

  101. Brand K, Page S, Rogler G, Bartsch A, Brandi R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated transcription factor NF-κB is present in the atherosclerotic lesion. J Clin Invest. 1996;97:1715.

    Article  PubMed  CAS  Google Scholar 

  102. Liao F, Andalibi A, deBeer FC, Fogelman AM, Susis AJ. Genetic control of inflammatory gene induction and NF-κB-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest. 1993;91:2572.

    Article  PubMed  CAS  Google Scholar 

  103. Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993;92:471.

    Article  PubMed  CAS  Google Scholar 

  104. Rajavashisth TB, Yamada H, Mishra NK. Transcriptional activation of the macrophagecolony stimulating factor gene by minimally modified LDL. Artehoscler Thromb Vasc Biol. 1995;15:1591.

    Article  CAS  Google Scholar 

  105. Yan SD, Schmidt AM, Andrson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889.

    PubMed  CAS  Google Scholar 

  106. Suzuki YJ, Miauno M, Packer L. Signal transduction for NF-κB activation: Proposed location of antioxidant-inhibitable step. J Immunol. 1994;153:5008.

    PubMed  CAS  Google Scholar 

  107. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 1991;10:2247.

    PubMed  CAS  Google Scholar 

  108. Schreck, R, Albermann K, Baeuerle PA. Nuclear factor κB: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17:221.

    Article  PubMed  CAS  Google Scholar 

  109. Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA: Dithiocarbamates as potent inhibitors of nuclear factor KB activation in intact cells. J Exp Med. 1992; 175:1181.

    Article  PubMed  CAS  Google Scholar 

  110. Schmidt KN, Traenckner EB, Meier B, Baeuerle PA. Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-KB. J Biol Chem. 1995;270:27136.

    Article  PubMed  CAS  Google Scholar 

  111. Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268:11380.

    PubMed  CAS  Google Scholar 

  112. Grimm S, Baeuerle PA. The inducible transcription factor NF-κB: Structure-function relationship of its protein subunits. Biochem J. 1993;290:297.

    PubMed  CAS  Google Scholar 

  113. Spiecker M, Darius H, Kaboth K, Hubner F, Liao JK. Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J Leuk Biol. 1998;63:732.

    CAS  Google Scholar 

  114. Traenckner EB, Wilk S, Baeuerle PA. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J. 1994;15:5433.

    Google Scholar 

  115. Schmitz ML, dos Santos Silva MA, Baeuerle PA. Transactivation domain 2 (TA2) of p65 NF-KB. Similarity to TAI and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem. 1995;270:15576.

    Article  PubMed  CAS  Google Scholar 

  116. Zhong H, Su Yang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-KB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997;89:413.

    Article  PubMed  CAS  Google Scholar 

  117. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD. Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase H-mediated phosphorylation of the p65 subunit. J Biol Chem. 1997;272:32606.

    Article  PubMed  CAS  Google Scholar 

  118. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835.

    Article  PubMed  CAS  Google Scholar 

  119. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARy. Cell. 1998;93:229.

    Article  PubMed  CAS  Google Scholar 

  120. Jiang C, Ting AT, Seed B. PPAR-? agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82.

    Article  PubMed  CAS  Google Scholar 

  121. Ricote M, Li AC, Wilson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-y is a negative regulator of macrophage activation. Nature (Lond). 1998;391:79.

    Article  CAS  Google Scholar 

  122. Marx N, Borucier T, Sukhova GK, Plutzky J. Human endothelial cells contain PPARs: evidence for PPARy in atheroma and its regulation of PAI-1 expression. Circlation. 1998;98:1383. (Abst).

    Article  Google Scholar 

  123. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Activation of human aortic smooth muscle cells is inhibited by PPARa but not by PPARγ activators. Nature. 1998;393:790.

    Article  PubMed  CAS  Google Scholar 

  124. Marx N, Schoenbeck U, Lazar MA, Libby P, Plutzky J: PPARy in human vascular smooth muscle cells: inhibition of matrix metalloprotease expression, activity, and cell migration. Circulation. 1998; 98:1382. (Abst).

    Article  Google Scholar 

  125. Kliewer SA, Lenhard JM, Wilson TM, Patel I, Morris DC, Lehmann JM. A Prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell. 1995;83:813.

    Article  PubMed  CAS  Google Scholar 

  126. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARy. Cell. 1995;83:803.

    Article  PubMed  CAS  Google Scholar 

  127. Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM. PPARy promotes monocyte/macrophage activation and uptake of oxidized LDL. Cell. 1988;93:241.

    Article  Google Scholar 

  128. Poynter ME, Daynes RA. Peroxisome proliferator-acivated receptor a activation modulates cellular redox status, represes nuclear factor-KB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem. 1998;273:32833.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kunsch, C., Medford, R.M. (2000). Oxidation-Sensitive Transcription and Gene Expression in Atherosclerosis. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics