Skip to main content

The Oxidative Modification Hypothesis of Atherogenesis

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

Atherosclerosis, and its clinical sequelae continue to be the leading cause of mortality and morbidity in the western world. It is a complex and chronic disease that is influenced by a wide variety of genetic, environmental and behavioral activities. Yet, there can be little doubt now that hypercholesterolemia is a dominant risk factor for atherosclerosis. Indeed, at any plasma cholesterol level above ∼ 160 mg/dl it is likely that the risk of developing clinical coronary artery disease (CAD) increases proportionately. Many clinical trials have now demonstrated convincingly that lowering plasma cholesterol levels can dramatically reduce both morbidity and mortality due to coronary and cerebrovascular disease, and even reduce total mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity]. N Engl J Med 1989; 320:915–924..

    PubMed  CAS  Google Scholar 

  2. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88:1785–1792..

    PubMed  CAS  Google Scholar 

  3. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994; 344:793–795..

    PubMed  CAS  Google Scholar 

  4. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997; 272:20963–20966.

    PubMed  CAS  Google Scholar 

  5. Steinberg D, Witztum JL. Lipoproteins, Lipoprotein Oxidation, and Atherogenesis. Chien KR, editor. 458–475. 1999. Philadelphia, W. B. Saunders Co. Molecular Basis of Cardiovascular Disease.

    Google Scholar 

  6. Napoli C, D’Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, Palinski W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimai accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100(11):2680–2690.

    PubMed  CAS  Google Scholar 

  7. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP, Herderick EE, Cornhill JF. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999; 281(8):727–735.

    PubMed  CAS  Google Scholar 

  8. Steinberg D, Witztum JL. Lipoproteins and atherogenesis. Current concepts. JAMA 1990; 264:3047–3052..

    PubMed  CAS  Google Scholar 

  9. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340(2): 115–126.

    PubMed  CAS  Google Scholar 

  10. Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 1992; 85:119–24..

    Google Scholar 

  11. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91:2844-28

    PubMed  CAS  Google Scholar 

  12. Newby AC, Libby P, van der Wal AC. Plaque instability-the real challenge for atherosclerosis research in the next decade? Cardiovasc Res 1999; 41(2):321–322.

    PubMed  CAS  Google Scholar 

  13. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76:333–337..

    PubMed  CAS  Google Scholar 

  14. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990; 343:531–535..

    PubMed  CAS  Google Scholar 

  15. Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993; 268:4569–4572..

    PubMed  CAS  Google Scholar 

  16. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 1980; 77:2214–2218..

    PubMed  CAS  Google Scholar 

  17. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1981; 78:6499–6503..

    PubMed  CAS  Google Scholar 

  18. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984; 81:3883–3887..

    PubMed  CAS  Google Scholar 

  19. Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest 1984; 74:1890–1894..

    PubMed  CAS  Google Scholar 

  20. Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24:1070–1076..

    PubMed  CAS  Google Scholar 

  21. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271:518–520..

    PubMed  CAS  Google Scholar 

  22. Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997; 8(5):275–280.

    PubMed  CAS  Google Scholar 

  23. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997; 386(6622):292–296.

    PubMed  CAS  Google Scholar 

  24. Nozaki S, Kashiwagi H, Yamashita S, Nakagawa T, Kostner B, Tomiyama Y, Nakata A, Ishigami M, Miyagawa J, Kameda-Takemura K. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest 1995;96:1859–1865.

    PubMed  CAS  Google Scholar 

  25. Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 1999; 274(27):19055–19062.

    PubMed  CAS  Google Scholar 

  26. Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993; 268:4569–4572..

    PubMed  CAS  Google Scholar 

  27. Hörkkö S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedm NP, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999; 103(1):117–128.

    PubMed  Google Scholar 

  28. Bird DA, Gillotte KL, Hörkkö S, Friedman P, Dennis EA, Witztum JL, Steinberg D. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells. Proc Natl Acad Sci USA 1999; 96:6347–6352..

    PubMed  CAS  Google Scholar 

  29. Sambrano GR, Steinberg D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci USA 1995; 92:1396–1400..

    PubMed  CAS  Google Scholar 

  30. Chang MK, Bergmark C, Laurila A, Hörkkö S, Han KH, Friedman P, Dennis EA, Witztum JL. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 1999; 96(11):6353–6358.

    PubMed  CAS  Google Scholar 

  31. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990; 85:1260–1266..

    PubMed  CAS  Google Scholar 

  32. Witztum JL. Role of oxidised low density lipoprotein in atherogenes is. Br Heart J 1993; 69:S12–S8.

    PubMed  CAS  Google Scholar 

  33. Esterbauer H, Dieber-Rotheneder M, Waeg G, Striegl G, Jurgens G. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol 1990; 3:77–92..

    PubMed  CAS  Google Scholar 

  34. Chisolm GM, Ma G, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, DiCorleto PE. 7 beta-hydroperoxycholest-5-en-3 beta-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci USA 1994;91:11452-11456.

    PubMed  CAS  Google Scholar 

  35. Uchida K, Toyokuni S, Nishikawa K, Kawakishi S, Oda H, Hiai H, Stadtman ER. Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 1994; 33:12487–12494..

    PubMed  CAS  Google Scholar 

  36. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86:1372-1376.

    PubMed  CAS  Google Scholar 

  37. Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84:1086–1095..

    PubMed  Google Scholar 

  38. Heinecke JW. Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. FASEB J 1999; 13(10):1113–1120

    PubMed  CAS  Google Scholar 

  39. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235:1043–1046..

    PubMed  CAS  Google Scholar 

  40. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984; 81:3883–3887..

    PubMed  CAS  Google Scholar 

  41. Khouw AS, Parthasarathy S, Witztum JL. Radioiodination of low density lipoprotein initiates lipid peroxidation: protection by use of antioxidants. J Lipid Res 1993; 34:1483–1496..

    PubMed  CAS  Google Scholar 

  42. McNally AK, Chisolm GM, Morel DW, Cathcart MK. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J Immunol 1990; 145(1):254–259.

    PubMed  CAS  Google Scholar 

  43. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994; 94:437–444..

    PubMed  CAS  Google Scholar 

  44. Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 1989; 86:1046–1050..

    PubMed  CAS  Google Scholar 

  45. Scheidegger KJ, Butler S, Witztum JL. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem 1997; 272(34):21609–21615.

    PubMed  CAS  Google Scholar 

  46. Benz DJ, Mol M, Ezaki M, Mori-Ito N, Zelaan I, Miyanohara A, Friedmann T, Parthasarathy S, Steinberg D, Witztum JL. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem 1995; 270(10):5191–5197.

    PubMed  CAS  Google Scholar 

  47. Ezaki M, Witztum JL, Steinberg D. Lipoperoxides in LDL incubated with fibroblasts that overexpress 15-lipoxygenase. J Lipid Res 1995; (369): 1996–2004.

    Google Scholar 

  48. Bocan TM, Rosebury WS, Mueller SB, Kuchera S, Welch K, Daugherty A, Cornicelli JA. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis 1998; 136(2):203–216.

    PubMed  CAS  Google Scholar 

  49. Sendobry SM, Cornicelli JA, Welch K, Bocan T, Tait B, Trivedi BK, Colbry N, Dyer RD, Feinmark SJ, Daugherty A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol 1997; 120(7): 1199–1206.

    PubMed  CAS  Google Scholar 

  50. Tillman C, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999;103:1597.

    Google Scholar 

  51. Reilly MP, Praticao D, Delanty N, DiMinno G, Tremoli E, Rader D, Kapoor S, Rokach J, Lawson J, FitzGerald GA. Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 1998; 98(25):2822–2828.

    PubMed  CAS  Google Scholar 

  52. Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1990;87:6959-6963.

    PubMed  Google Scholar 

  53. Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Sarkioja T, Witztum JL, Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991; 87:1146–1152..

    PubMed  Google Scholar 

  54. Kuhn H, Belkner J, Zaiss S, Feahrenklemper T, Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenes is. J Exp Med 1994; 179(6):1903–1911.

    PubMed  CAS  Google Scholar 

  55. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest 1995; 96:504–510..

    PubMed  CAS  Google Scholar 

  56. Li H, Cybulsky MI, Gimbrone MA, Jr., Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arteriosclerosis and Thrombosis 1993; 13:197–204..

    PubMed  Google Scholar 

  57. Kume N, Gimbrone MJ. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest 1994; 93(2):907–911.

    PubMed  CAS  Google Scholar 

  58. Khan BV, Parthasarathy SS, Alexander RW, Medford RM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 1995; 95(3):1262–1270.

    PubMed  CAS  Google Scholar 

  59. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989; 9(6):895–907.

    PubMed  CAS  Google Scholar 

  60. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989; 9(6):908–918.

    PubMed  CAS  Google Scholar 

  61. Williams KJ, Tabas I. The response-to-retention hypothesis of atherogenes is reinforced. Curr Opin Lipidol 1998; 9(5):471–474.

    PubMed  CAS  Google Scholar 

  62. Calara F, Dimayuga P, Niemann A, Thyberg J, Diczfalusy U, Witztum JL, Palinski W, Shah PK, Cercek B, Nilsson J, Regnstreom J. An animal model to study local oxidation of LDL and its biological effects in the arterial wall. Arterioscl Thromb Vasc Biol 1998; 18(6):884–893.

    PubMed  CAS  Google Scholar 

  63. Napoli C, D’Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, Palinski W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimai accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100(11):2680–2690.

    PubMed  CAS  Google Scholar 

  64. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996; 16:831–842..

    PubMed  CAS  Google Scholar 

  65. Watson AD, Leitinger N, Navab M, Faull KF, Heorkkeo S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 1997; 272(21):13597–13607.

    CAS  Google Scholar 

  66. Witztum JL, Berliner JA. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol 1998; 9(5):441–448.

    PubMed  CAS  Google Scholar 

  67. Shih PT, Elices MJ, Fang ZT, Ugarova TP, Strahl D, Territo MC, Frank JS, Kovach NL, Cabanas C, Berliner JA, Vora DK. Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating betal integrin. J Clin Invest 1999; 103(5):613–625.

    PubMed  CAS  Google Scholar 

  68. Kume N, Cybulsky MI, Gimbrone MJ. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest1992; 90(3):1138–1144.

    PubMed  CAS  Google Scholar 

  69. Rankin SM, Parthasarathy S, Steinberg D. Evidence for a dominant role of lipoxygenase(s. in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 1991; 32:449–456..

    PubMed  CAS  Google Scholar 

  70. Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 1993; 91:2572–2579..

    PubMed  CAS  Google Scholar 

  71. Yoshida H, Quehenberger O, Kondratenko N, Green S, Steinberg D. Minimally oxidized lowdensity lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol 1998; 18(5):794–802.

    PubMed  CAS  Google Scholar 

  72. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma. in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 1998; 95(13):7614–7619.

    PubMed  CAS  Google Scholar 

  73. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662):79–82.

    PubMed  CAS  Google Scholar 

  74. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93(2):229–240.

    PubMed  CAS  Google Scholar 

  75. Bjorkerud B, Bjeorkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arterioscler Thromb Vasc Bio 1996; 16(3):416–424.

    CAS  Google Scholar 

  76. Mitchinson MJ, Hardwick SJ, Bennett MR. Cell death in atherosclerotic plaques. Curr Opin Lipidol 1996; 7(5):324–329.

    PubMed  CAS  Google Scholar 

  77. Witztum JL, Palinski W. Are immunological mechanisms relevant for the development of atherosclerosis?. Clin Immunol 1999; 90(2):153–156.

    PubMed  CAS  Google Scholar 

  78. Esterbauer H, Gebicki J, Puhl H, Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13:341–390..

    PubMed  CAS  Google Scholar 

  79. Dabbagh AJ, Frei B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J Clin Invest 1995; 96(4):1958–1966.

    PubMed  CAS  Google Scholar 

  80. Heiple JM, Wright SD, Allen NS, Silverstein SC. Macrophages form circular zones of very close apposition to IgG-coated surfaces. Cell Motil Cytoskeleton 1990; 15:260–270..

    PubMed  CAS  Google Scholar 

  81. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988; 241:215–218..

    PubMed  CAS  Google Scholar 

  82. Palinski W, Yla-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990; 10:325–335..

    PubMed  CAS  Google Scholar 

  83. Rosenfeld ME, Palinski W, Yla-Herttuala S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990; 10:336–349..

    PubMed  CAS  Google Scholar 

  84. Boyd HC, Gown AM, Wolfbauer G, Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Path 1989; 135(5):815–825.

    PubMed  CAS  Google Scholar 

  85. Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 1994; 14:605–616..

    PubMed  CAS  Google Scholar 

  86. Hulten LM, Lindmark H, Diczfalusy U, Bjorkhem I, Ottosson M, Liu Y, Bondjers G, Wiklund O. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J Clin Invest 1996; 97(2):461–468.

    PubMed  CAS  Google Scholar 

  87. Pratico D, Iuliano L, Mauriello A, Spagnoli L, Lawson JA, Maclouf J, Violi F, FitzGerald GA. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest 1997; 100:2028–2034..

    PubMed  CAS  Google Scholar 

  88. Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 1998; 4(10):1189–1192.

    PubMed  CAS  Google Scholar 

  89. Sevanian A, Hwang J, Hodis H, Cazzolato G, Avogaro P, Bittolo-Bon G. Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol 1996; 16(6):784–793.

    PubMed  CAS  Google Scholar 

  90. Palinski W, Hörkkö S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, Witztum JL. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 1996; 98(3):800–814.

    PubMed  CAS  Google Scholar 

  91. Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest 1995; 95(6):2611–2619.

    PubMed  CAS  Google Scholar 

  92. Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86(4):1372–1376.

    Google Scholar 

  93. Palinski W, Tangirala RK, Miller E, Young SG, Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscl Thromb Vasc Biol 1995; 15(10):1569–1576.

    PubMed  CAS  Google Scholar 

  94. Salonen JT, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992; 339:883–887..

    PubMed  CAS  Google Scholar 

  95. Ylä-Herttuala S. Is oxidized low-density lipoprotein present in vivo? Curr Opin Lipidol 1998; 9(4):337–344.

    Google Scholar 

  96. Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 1994; 14:32–40..

    PubMed  Google Scholar 

  97. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J NuclCardiol 1999; 61 Pt l):41–53.

    Google Scholar 

  98. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987; 84:7725–7729..

    PubMed  CAS  Google Scholar 

  99. Kita T, Nagano Y, Yokode M, Ishi K, Kume N, Ooshima A, Yoshida H, Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 1987; 84:5928–5931..

    PubMed  CAS  Google Scholar 

  100. Sasahara M, Raines EW, Chait A, Carew TE, Steinberg D, Wahl PW, Ross R. Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol. I. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest 1994; 94:155–164.

    PubMed  CAS  Google Scholar 

  101. Fruebis J, Steinberg D, Dresel HA, Carew TE. A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. J Clin Invest 1994; 94:392–398..

    PubMed  CAS  Google Scholar 

  102. Parker RA, Sabrah T, Cap M, Gill BT. Relation of vascular oxidative stress, alpha-tocopherol, and hypercholesterolemia to early atherosclerosis in hamsters. Arterioscler Thromb Vasc Biol 1995; 15:349–358..

    PubMed  CAS  Google Scholar 

  103. Fruebis J, Bird DA, Pattison J, Palinski W. Extent of antioxidant protection of plasma LDL is not a predictor of the antiatherogenic effect of antioxidants. J Lipid Res 1997; 38(12):2455–2464.

    PubMed  CAS  Google Scholar 

  104. Zhang SH, Reddick RL, Avdievich E, Surles LK, Jones RG, Reynolds JB, Quarfordt SH, Maeda N. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J Clin Invest 1997; 99(12):2858–2866.

    PubMed  CAS  Google Scholar 

  105. Bird DA, Tangirala RK, Fruebis J, Steinberg D, Witztum JL, Palinski W. Effect of probucol on LDL oxidation and atherosclerosis in LDL receptor-deficient mice. J Lipid Res 1998; 39(5):1079–1090.

    PubMed  CAS  Google Scholar 

  106. Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, Ohba Y, Kato Y, Tamura K, Hayasaka A, Higashida A, Sakaguchi H, Takeya M, Takahashi K, Inoue K, Noguchi N, Niki E, Kodama T. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sei USA 1998; 95(17):10123–10128.

    CAS  Google Scholar 

  107. Tangirala RK, Casanada F, Miller E, Witztum JL, Steinberg D, Palinski W. Effect of the antioxidant N,N’-diphenyl 1,4-phenylenediamine (DPPD. on atherosclerosis in apoE-deficient mice. Arterioscl Thromb Vasc Biol 1995; 15(10):1625–1630.

    PubMed  CAS  Google Scholar 

  108. Witting PK, Pettersson K, Ostlund-Lindqvist AM, Westerlund C, Eriksson AW, Stocker R. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J 1999; 13(6):667–675.

    PubMed  CAS  Google Scholar 

  109. Crawford RS, Kirk EA, Rosenfeld ME, LeBoeuf RC, Chait A. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arterioscl Thromb Vasc Biol 1998; 18(9):1506–1513.

    PubMed  CAS  Google Scholar 

  110. Reaven PD, Witztum JL. Oxidized LDL in atherogenesis: role of dietary modification. In: McCormack D, editor. Annual Review of Nutrition. Palo Alto: Annual Reviews Inc., 1996: 51–71.

    Google Scholar 

  111. Tsimikas S, Reaven PD. The role of dietary fatty acids in lipoprotein oxidation and atherosclerosis. Curr Opin Lipidol 1998; 94):301–307.

    Google Scholar 

  112. Reaven P, Parthasarathy S, Grasse BJ, Miller E, Steinberg D, Witztum JL. Effects of oleaterich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 1993; 91:668–676..

    PubMed  CAS  Google Scholar 

  113. Tsimikas S, Philis-Tsimikas A, Alexopoulos S, Sigari F, Lee C, Reaven PD. LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte Chemotaxis and adhesion when exposed to oxidative stress. Artehoscl Thromb Vasc Biol 1999; 19(1):122–130.

    CAS  Google Scholar 

  114. Shwaery GT, Vita JA, Keaney JJ. Antioxidant protection of LDL by physiologic concentrations of estrogens is specific for 17-beta-estradiol. Atherosclerosis 1998; 138(2):255–262.

    PubMed  CAS  Google Scholar 

  115. Reaven PD, Khouw A, Beltz WF, Parthasarathy S, Witztum JL. Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by beta-carotene. Arterioscler Thromb 1993; 13:590–600..

    PubMed  CAS  Google Scholar 

  116. Reaven PD, Witztum JL. Comparison of supplementation of RRR-alpha-tocopherol and racemic alpha-tocopherol in humans. Effects on lipid levels and lipoprotein susceptibility to oxidation. Arterioscler Thromb 1993; 13:601–608..

    PubMed  CAS  Google Scholar 

  117. Keaney JFJ, Vita JA. Atherosclerosis, oxidative stress, and antioxidant protection in endothelium-derived relaxing factor action. Prog Cardiovasc Dis 1995; 38:129–154..

    PubMed  Google Scholar 

  118. Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforini DM, McIntyre TM, Du BN, Fogelman AM, Berliner JA. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 1995; 95:774–782..

    PubMed  CAS  Google Scholar 

  119. Lee C, Sigari F, Segrado T, Heorkkeo S, Hama S, Subbaiah PV, Miwa M, Navab M, Witztum JL, Reaven PD. All ApoB-containing lipoproteins induce monocyte Chemotaxis and adhesion when minimally modified. Modulation of lipoprotein bioactivity by platelet-activating factor acetylhydrolase. Artehoscl Thromb Vase Biol 1999; 19(6):1437–1446.

    Google Scholar 

  120. Boraen J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 1998; 101(12):2658–2664.

    Google Scholar 

  121. Romano M, Romano E, Bjeorkerud S, Hurt-Camejo E. Ultrastructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries. Artehoscl Thromb Vase Biol 1998; 18(4):519–525.

    CAS  Google Scholar 

  122. Mackness MI, Mackness B, Durrington PN, Fogelman AM, Berliner J, Lusis AJ, Navab M, Shih D, Fonarow GC. Paraoxonase and coronary heart disease. Curr Opin Lipidol 1998; 9(4):319–324.

    PubMed  CAS  Google Scholar 

  123. Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, Castellani LW, Furlong CE, Costa LG, Fogelman AM, Lusis AJ. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 1998; 394(6690):284–287.

    PubMed  CAS  Google Scholar 

  124. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 1997; 95(1):76–82.

    PubMed  CAS  Google Scholar 

  125. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl JMed 1994; 330(15):1029-1035.

    Google Scholar 

  126. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ, Brown MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347:781–785.

    PubMed  CAS  Google Scholar 

  127. Walldius G, Erikson U, Olsson AG, Bergstrand L, Hadell K, Johansson J, Kaijser L, Lassvik C. The effect of probucol on femoral atherosclerosis: the probucol quantitative regression Swedish trial (PQRST). Am J Card 1994; 74:875-883.

    PubMed  CAS  Google Scholar 

  128. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sei USA 1987; 84:7725–7729.

    CAS  Google Scholar 

  129. Mao S, Yates M, Parker R, Chi E, Jackson R. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic watanabe rabbits with use of a probucol analogue (MDL 29,311. that does not lower serum cholesterol. Arterio and Thromb 1991; 11:1266–1275.

    CAS  Google Scholar 

  130. Daugherty A, Zweifel BS, Schonfeld G. The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. Br J Pharmacol 1991; 103:1013–1018.

    PubMed  CAS  Google Scholar 

  131. Morel DW, de la Llera-Moya M, Friday K. Treatment of cholesterol-fed rabbits with dietary vitamins E and C inhibits lipoprotien oxidation but not development of atherosclerosis. Am Inst Nutri 1994;2123–2130.

    Google Scholar 

  132. Witting P, Pettersson K, Ostlund-Lindqvist AM, Westerlund C, Wagberg M, Stocker R. Dissociation of atherogenesis from aortic accumulation of lipid hydro(pero)xides in Watanabe heritable hyperlipidemic rabbits. J Clin. Invest 1999; 104,213–220.

    PubMed  CAS  Google Scholar 

  133. Mao SJ, Yates MT, Parker RA, Chi EM, Jackson RL. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucol analogue (MDL 29,311). that does not lower serum cholesterol. Arterioscler Thromb 1991; 11:1266–1275..

    PubMed  CAS  Google Scholar 

  134. Stein Y, Stein O, Delplanque B, Fesmire JD, Lee DM, Alaupovic P. Lack of effect of probucol on atheroma formation in cholesterol-fed rabbits kept at comparable plasma cholesterol levels. Atherosclerosis 1989; 75:145–155..

    PubMed  CAS  Google Scholar 

  135. Daugherty A, Zweifel BS, Schonfeld G. Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Br J Pharmacol 1989; 98:612–618..

    PubMed  CAS  Google Scholar 

  136. Prasad K, Kalra J, Lee P. Oxygen free radicals as a mechanism of hypercholesterolemic atherosclerosis: effects of probucol. International J Angio 1994; 3:100–112..

    Google Scholar 

  137. Sparrow CP, Doebber TW, Olszewski J, Wu MS, Ventre J, Stevens KA, Chao YS. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’-diphenyl-phenylenediamine. J Clin Invest 1992; 89:1885–1891..

    PubMed  CAS  Google Scholar 

  138. Bjorkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterio and Thromb 1991; 11:15–22..

    CAS  Google Scholar 

  139. Mantha SV, Prasad M, Kalra J, Prasad K. Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits. Atherosclerosis 1993; 101:135–144..

    PubMed  CAS  Google Scholar 

  140. Kleinveld HA, Hak-Lemmers H, Hectors M, de Fouw NJ, Demacker P, Stalenhoef A. Vitamin E and fatty acid intervention does not attenuate the progression of atherosclerosis in watanabe heritable hyperlipidemic rabbits. Aterio Thromb and Vasc Biol 1995; 15:290–297..

    CAS  Google Scholar 

  141. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest 1995; 96:2075–2082..

    PubMed  CAS  Google Scholar 

  142. Fruebis J, Carew TE, Palinski W. Effect of vitamin E on atherogenesis in LDL receptordeficient rabbitsl. Atherosclerosis 1996; 117:217–224..

    Google Scholar 

  143. Tangirala RK, Casanada F, Miller E, Witztum JL, Steinberg D, Palinski W. Effect of the antioxidant N,N’-diphenyl 1,4-phenylenediamine (DPPD). on atherosclerosis in apoEdeficient mice. Arterioscler Thromb Vasc Biol 1995; 15:1625–1630..

    PubMed  CAS  Google Scholar 

  144. Verlangieri AJ, Bush MJ. Effects of d-α-tocopherol supplementation on experimentally induced primate atherosclerosis. J Am Coll Nutri 1992; 11:131–138.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsimikas, S., Witztum, J.L. (2000). The Oxidative Modification Hypothesis of Atherogenesis. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics