Skip to main content

Sources of Vascular Oxidative Stress

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

Abstract

Atherosclerotic vascular disease is the leading cause of death in industrialized society. One important risk factor for the onset of atherosclerosis is an elevated concentration of low density lipoprotein (LDL), the major carrier of blood cholesterol (1). It is thus paradoxical that LDL often fails to exert atherogenic effects in vitro. These observations led to the suggestion that LDL has to be modified to promote vascular disease (2,3). Subsequent studies indicate that cultured arterial cells modify LDL (4) and that the mechanism involves oxidative damage (5–7). Oxidized LDL, but not native LDL, exerts a multitude of potentially atherogenic effects in vitro and in vivo (8,9), suggesting that oxidation might be a physiologically relevant pathway for LDL modification in the artery wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown MS, Goldstein JL. Koch’s postulates for cholesterol. Cell. 1992;71:187.

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76:333.

    Article  PubMed  CAS  Google Scholar 

  3. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA. 1980;77:2214.

    Article  PubMed  CAS  Google Scholar 

  4. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA. 1981;78:6499.

    Article  PubMed  CAS  Google Scholar 

  5. Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest. 1984;74:1890.

    Article  PubMed  CAS  Google Scholar 

  6. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984;4:357.

    Article  PubMed  CAS  Google Scholar 

  7. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984;81:3883.

    Article  PubMed  CAS  Google Scholar 

  8. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785.

    Article  PubMed  CAS  Google Scholar 

  9. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Rad Biol Med. 1996;20:707

    Article  PubMed  CAS  Google Scholar 

  10. Esterbauer H, Gebicki J, Puhl H, Jurgens G: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med. 1992; 13:341.

    Article  PubMed  CAS  Google Scholar 

  11. Daugherty A, Zweifel BS, Sobel BE, Schonfeld G. Isolation of low density lipoprotein from atherosclerotic vascular tissue of Watanabe Heritable Hyperlipidemic rabbits. Arteriosclerosis. 1988;8:768.

    Article  PubMed  CAS  Google Scholar 

  12. Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84:1086.

    Article  PubMed  CAS  Google Scholar 

  13. Haberland ME, Cheng L, Fong D. Malondialdehyde-altered protein occurs in atheroma of Watanabe Heritable hyperlipidemic rabbits. Science. 1988;241:215.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenfeld ME, Palinski W, Yla-Herttuala S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein-B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990; 10:336.

    Article  PubMed  CAS  Google Scholar 

  15. Steinberg D. Clinical trials of antioxidants in atherosclerosis: Are we doing the right thing? Lancet. 1995;346:36.

    Article  PubMed  CAS  Google Scholar 

  16. Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and atherosclerotic heart disease. N Eng J Med. 1997;337:408.

    Article  CAS  Google Scholar 

  17. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ, Brown MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347:781.

    Article  PubMed  CAS  Google Scholar 

  18. Frei B, Stocker R, Ames, BN, Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85:9748.

    Article  PubMed  CAS  Google Scholar 

  19. Ehrenwald E, Chisolm GM, Fox PL. Intact ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994;93:1493.

    Article  PubMed  CAS  Google Scholar 

  20. Balla G, Eaton JW, Belcher JD, Vercellotti GM. Hemin: A possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb. 1991;11:1700.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas JP, Kalyanaraman B, Girotti W. Involvement of preexisting lipid hydroperoxides in Cu2+-stimulated oxidation of low-density lipoprotein. Arch Biochem Biophysics. 1994;315:244.

    Article  CAS  Google Scholar 

  22. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma of fasting donors. Proc Natl Acad Sci USA. 1992;89:10316.

    Article  PubMed  CAS  Google Scholar 

  23. Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, peterson H, Sevanian A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J. Lipid Res. 1994;35:669.

    PubMed  CAS  Google Scholar 

  24. Smith C, Mitchinson MJ, Aruoma OI, Halliwell B. Stimulation of lipid peroxidation and hydroxyl radical generation by the contents of human atherosclerotic lesions. Biochem J. 1992;286:901.

    PubMed  CAS  Google Scholar 

  25. Swain J, Gutteridge JMC. Prooxidant iron and copper, with ferroxidase and xanthine oxidase activity in human atherosclerotic material. FEBS Let. 1995;368:513.

    Article  CAS  Google Scholar 

  26. Lamb D, Mitchinson MJ, Leake DS. Transition metals within human atherosclerotic lesions can catalyze the oxidation of low density lipoprotein by macrophages. FEBS Let. 1995;374:12.

    Article  CAS  Google Scholar 

  27. Aasa R, Malmstrom BG, Saltman P, Vanngard T. The specific binding of iron (III) and copper (II) to transferrin and conalbumin. Biochem Biophys Acta. 1963;75:203.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas CE. The influence of medium components on Cu-dependent oxidation of low density lipoproteins and its sensitivity to Superoxide dismutase. Biochim Biophys Acta. 1992;1128:50.

    Article  PubMed  CAS  Google Scholar 

  29. Peters T Jr, Blumenstock FA. Copper-binding properties of bovine serum albumin and its amino-terminal peptide fragment. J Biol Chem. 1967;242:1574.

    PubMed  CAS  Google Scholar 

  30. Ascherio A, Willett WC. Are body iron stores related to the risk of coronary heart disease? N Eng J Med. 1994;330:1152.

    Article  CAS  Google Scholar 

  31. Bothwell TH, Charlton RW, Cook JD, Finch CA. Iron metabolism in man. 1979; Oxford: Blackwell Scientific Pub.

    Google Scholar 

  32. Miller M, Hutchins GM. Hemochromatosis, multiorgan hemosiderosis, and coronary artery disease. JAMA. 1994;272:231.

    Article  PubMed  CAS  Google Scholar 

  33. Dabbagh AJ, Shwaery GT, Keaney JF, Frei B. Effect of iron overload and iron deficiency on atherosclerosis in the hypercholesterolemic rabbit. Arterioscler Thromb Vasc Biol. 1997;17:2638.

    Article  PubMed  CAS  Google Scholar 

  34. Araujo JA, Romano EL, Brito BE, Parthe V, Romano M, Bracho M, Montano RF, Cardier J: Iron overload augments the development of atherosclerotic lesions in rabbits. Arterioscler Thromb Vasc Biol. 1995; 15:1172.

    Article  PubMed  CAS  Google Scholar 

  35. Danks DM. Disorders of copper transport. In: Scriver, C.R., Beaudet, A.L. Sly, W.S., Valley, D. Eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, Inc. 1989:1411.

    Google Scholar 

  36. Heinecke JW. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Cur Opin Lipid. 1997;8:268.

    Article  CAS  Google Scholar 

  37. Lynch SM, Frei B. Mechanisms of copper-dependent and iron-dependent oxidative modification of human low density lipoprotein. J Lipid Res. 1993;34:1745.

    PubMed  CAS  Google Scholar 

  38. Leuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997;272:3520.

    Article  Google Scholar 

  39. Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW, Thorpe SR. Formation of otyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem. 1993;268:12341.

    PubMed  CAS  Google Scholar 

  40. Fridovich I. The biology of oxygen radicals. Science. 1978;201:875.

    Article  PubMed  CAS  Google Scholar 

  41. Klebanoff SF. Oxygen metabolism and the toxic properties of phagocytes. Ann Int Med. 1980;93:480.

    PubMed  CAS  Google Scholar 

  42. Hiramatsu K, Rosen H, Heinecke J, Wolfbauer G, Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis. 1987;7:55.

    Article  PubMed  CAS  Google Scholar 

  43. Cathcart MK, McNally AK, Morel DW, Chisolm GM. Superoxide anion participation in human monocyte-mediated oxidation of LDL and conversion of LDL to a cytotoxin. J Immunol. 1989;142:1963.

    PubMed  CAS  Google Scholar 

  44. Heinecke JW, Baker L, Rosen H, Chait A. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J Clin Invest. 1986;77:757.

    Article  PubMed  CAS  Google Scholar 

  45. Stenbrecher UP. Role of Superoxide in endothelial cell modification of LDL. Biochem Biophys Acta. 1988;959:20.

    Article  Google Scholar 

  46. Mukhopadhyay CK, Ehrenwald E, Fox PL. Ceruloplasmin enhances smooth muscle cell-and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. J Biol Chem. 1996;271:14773.

    Article  PubMed  CAS  Google Scholar 

  47. Bedwell SR, Dean T, Jessup W. The action of defined oxygen-centered radicals on human low-density lipoprotein. Biochem J. 1989;262:707.

    PubMed  CAS  Google Scholar 

  48. Parthasarathy S, Weiland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA. 1989;86:1046.

    Article  PubMed  CAS  Google Scholar 

  49. Jessup W, Simpson JA, Dean RT. Does Superoxide radical have a role in macrophage mediated oxidative modification of LDL? Atherosclerosis. 1993;99:107.

    Article  PubMed  CAS  Google Scholar 

  50. Rabini J, Klug-Roth D, Lilie J. Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions. J Phys Chem. 1973;77:1169.

    Article  Google Scholar 

  51. Buettner GR. The pecking order of free radicals and antioxidants: Lipid peroxidation, alphatocopherol, and ascorbate. Arch Biochem Biophys. 1993;300:535.

    Article  PubMed  CAS  Google Scholar 

  52. Heinecke JW, Suzuki L, Rosen H, Chait A. The role of sulfur containing amino acids in Superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem. 1987;262:10098.

    PubMed  CAS  Google Scholar 

  53. Parthasarthy S. Oxidation of low density lipoprotein by thiol compounds leads to its recognition by the acetyl-LDL receptor. Biochem Biophys Acta. 1987;917:337.

    Article  Google Scholar 

  54. Heinecke JW, Kawamura M, Suzuki L, Chait A. Oxidation of low density lipoprotein by thiols: superoxide-dependent and-independent mechanisms. J Lipid Res. 1993;34:2051.

    PubMed  CAS  Google Scholar 

  55. Sparrow CP, Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res 1993;34:1219.

    PubMed  CAS  Google Scholar 

  56. Lynch SM, Frei B. Physiological thiol compounds exert pro-and anti-oxidant effects, respectively, on iron-and copper-dependent oxidation of human low-density lipoprotein. Biochem Biophys Acta. 1997;1345:215.

    Article  PubMed  CAS  Google Scholar 

  57. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver, CR, Beaudet AL, Sly WS, Valley D., eds. The metabolic basis of inherited disease. New York: McGraw-Hill.1989:793.

    Google Scholar 

  58. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Amer College Card. 1996;27:517.

    Article  CAS  Google Scholar 

  59. Harker LA, Ross R, Slichter SJ, Scott CR. Homocystine-induced arteriosclerosis. J Clin Invest. 1976;58:731.

    Article  PubMed  CAS  Google Scholar 

  60. Dudman NPD, Wilcken DEL, Stocker R: Circulating lipid hydroperoxide levels in human homocysteinemia. Arterioscler Thromb. 1993; 13:512.

    Article  PubMed  CAS  Google Scholar 

  61. Yamamoto S. Mammalian lipoxygenases: Molecular structures and functions. Biochem Biophys Acta. 1992;1128:117.

    Article  PubMed  CAS  Google Scholar 

  62. Sparrow CP, Parthasarathy S, Steinberg D. Enzymatic modification of LDL by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988;29:745.

    PubMed  CAS  Google Scholar 

  63. Parthasarathy S, Weiland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA. 1989;86:1046.

    Article  PubMed  CAS  Google Scholar 

  64. Jessup W, Darley-Usmar V, O’Leary V, Bedwell OS. 5-Lipoxygenase is not essential for macrophage mediated oxidation of LDL. Biochem J. 1991;278:163.

    PubMed  CAS  Google Scholar 

  65. Sparrow CP, Olszewski J. Cellular oxidative modification of LDL does not require lipoxygenases. Proc Natl Acad Sci USA. 1991;89:128.

    Article  Google Scholar 

  66. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Sarkioia T, Witztum JL, Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA. 1987;87:6959.

    Article  Google Scholar 

  67. Yla-Herttuala S, Luoma J, Viita H, Hiltunen T, Sisto T, Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995;95:2692.

    Article  PubMed  CAS  Google Scholar 

  68. Belkner J, Wiesner R, Rathman J, Barnett J, Sigal E, Kuhn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993;213:251.

    Article  PubMed  CAS  Google Scholar 

  69. Folcik VA, Nivar-Aristy RA, Krajewski LP, Cathcart MK. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995;96:504.

    Article  PubMed  CAS  Google Scholar 

  70. Kuhn H, Heydeck D, Hugou I, Gniwotta C. In vivo action of 15-lipoxygenase in early stages of human atherosclerosis. J Clin Inves. 1997;99:888.

    Article  CAS  Google Scholar 

  71. Rao SI, Wilks A, Hamberg M, Ortiz de Montellano PR. The lipoxygenase activity of myoglobin. J Biol Chem. 1994;269:7210.

    PubMed  CAS  Google Scholar 

  72. Tillman C, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999; 103:1597.

    Article  Google Scholar 

  73. Semenkovich CF, Heinecke JW. The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes. 1997;46:327.

    Article  PubMed  CAS  Google Scholar 

  74. The Diabetes Control and Complication Trial. N Eng J Med. 1993;329:683.

    Article  Google Scholar 

  75. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405.

    Article  PubMed  CAS  Google Scholar 

  76. Bucala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharm. 1992;23:1.

    Article  CAS  Google Scholar 

  77. Ahmed MU, Thorpe SR, Baynes JW. Identification of N-(carboxymethyl)-lysine as a degradation product of fructoselysine in glycated proteins. J Biol Chem. 1986;261:4889.

    PubMed  CAS  Google Scholar 

  78. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW. Accumulation of Mailard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463.

    Article  PubMed  CAS  Google Scholar 

  79. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N9epsilon)-(carboxymethyl) lysine in human tissues in diabetes and aging. J Clin Invest. 1997;99:457.

    Article  PubMed  CAS  Google Scholar 

  80. Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109.

    PubMed  CAS  Google Scholar 

  81. Cooke JP, Tsao PS. Is NO an endogenous antiatherogenic molecule? Arterioscler Thromb. 1994;14:653.

    Article  PubMed  CAS  Google Scholar 

  82. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA. 1990;87:1620.

    Article  PubMed  CAS  Google Scholar 

  83. Graham AN, Hogg N, Kalyanaraman B, O’Leary V, Darley-Usmar V, Moncade S. Peroxynitrite modifications of LDL leads to recognition by the macrophage scavenger receptor. FEBS. 1993;330:181.

    Article  CAS  Google Scholar 

  84. Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Meth Enzym. 1994;233:229.

    Article  PubMed  CAS  Google Scholar 

  85. Beckman JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler. 1994;375:81.

    Article  Google Scholar 

  86. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The participation of nitric oxide in cell free and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta. 1992;1180:73.

    Article  PubMed  CAS  Google Scholar 

  87. Yates MT, Lambert LE, Whitten JP, MacDonald I, Mano M, Ku G, Mao SJT. A protective role for nitric oxide in the oxidative modification of low density lipoprotein by mouse macrophages. FEBS Lett. 1992;309:135.

    Article  PubMed  CAS  Google Scholar 

  88. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide: Potential role in atherogenesis. FEBS Lett. 1993;334:170.

    Article  PubMed  CAS  Google Scholar 

  89. Rubbo H, Parthasarathy S, Barnes S, Kirk M, Kalyanaraman B, Freeman BA. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: Termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys. 1995;324:1.

    Article  Google Scholar 

  90. Aji W, Ravalli S, Szabolcs M, Jiang X-C, Sciacca RR, Michler RE, Canon PJ. L-arginine prevents Xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation. 1997;95:430.

    Article  PubMed  CAS  Google Scholar 

  91. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerosis. J Biol Chem. 1997;272:1433.

    Article  PubMed  CAS  Google Scholar 

  92. Gaziano JM, Hennekens CH. Vitamin antioxidants and cardiovascular disease. Cur Opin Lipidology. 1992;3:91.

    Google Scholar 

  93. Jha P, Flather M, Lonn E, Farkouh M, Yusuf S. The antioxidant vitamins and cardiovascular disease — a critical review of epidemiological and clinical trial data. Ann Int Med. 1995;123:860.

    PubMed  CAS  Google Scholar 

  94. Bowry VW, Stocker R. Tocopherol-mediated peroxidation: the prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J Am Chem Soc. 1993;115:6029.

    Article  CAS  Google Scholar 

  95. Ingold KU, Bowry VW, Stocker R, Walling C. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids-unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc Natl Acad Sci USA. 1993;90:45.

    Article  PubMed  CAS  Google Scholar 

  96. Lynch SM, Frei B. Reduction of copper, but not iron, by human low density lipoprotein (LDL)-implications for metal ion-dependent oxidative modification of LDL. J Biol Chem. 1995;270:5158.

    Article  PubMed  CAS  Google Scholar 

  97. Kontush A, Meyer S, Finckh B, Kohlschutter A, Beisiegel U. Alpha-tocopherol as a reductant for Cu(II) in human lipoproteins-triggering role in the initiation of lipoprotein oxidation. J Biol Chem. 1996;271:11106.

    Article  PubMed  CAS  Google Scholar 

  98. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995;96:2075.

    Article  PubMed  CAS  Google Scholar 

  99. Kleinveld HA, Demacker PNM, Stalenhoef AFH. Comparative study on the effect of lowdose vitamin E and probucol on the susceptibility of LDL to oxidation and the progression of atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Arterioscler and Thromb. 1994;14:1386.

    Article  CAS  Google Scholar 

  100. Kleinveld HA, Hak-Lemmers HLM, Hectors MPC, de Fouw NJ, Demacker PNM, Stalenhoef AFH: Vitamin E and fatty acid intervention does not attenuate the progression of atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 1995; 15:290.

    Article  PubMed  CAS  Google Scholar 

  101. Hurst JK, Barette WC. Leukocytic oxygen activation and microbicidal oxidative toxins. CRC Critical Reviews Biochem Mol Biol. 1989;24:271.

    Article  CAS  Google Scholar 

  102. Zeng J, Fenna RE. X-ray crystal structure of canine myeloperoxidase at 3 A resolution. J Mol Biol. 1992;226:185.

    Article  PubMed  CAS  Google Scholar 

  103. Daugherty A, Rateri DL, Dunn JL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437.

    Article  PubMed  CAS  Google Scholar 

  104. Heinecke JW, Li W, Daehnke HL, Goldstein JA. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993;268:4069.

    PubMed  CAS  Google Scholar 

  105. Savenkova MI, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for initiation of lipid peroxidation in low density lipoprotein. J Biol Chem. 1994;269:20394.

    PubMed  CAS  Google Scholar 

  106. Karthein R, Dietz R, Nastainczyk W, Ruff H. Higher oxidation states of Prostaglandin H synthase. Eur J Biochem. 1988;171:313.

    Article  PubMed  CAS  Google Scholar 

  107. Heinecke JW, Li W, Francis GA, Goldstein JA. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993;91:2866.

    Article  PubMed  CAS  Google Scholar 

  108. Francis GA, Mendez AJ, Bierman EL, Heinecke JW. Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells. Proc Natl Acad Sci USA. 1993;90:6631.

    Article  PubMed  CAS  Google Scholar 

  109. Harrison JE, Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976;251:1371.

    PubMed  CAS  Google Scholar 

  110. Weiss SJ, Test ST, Eckmann CM, Ross D, Regiani S. Brominating oxidants generated by human eosinophils. Science. 1986;234:200.

    Article  PubMed  CAS  Google Scholar 

  111. Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW. Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest. 1996;98:1283.

    Article  PubMed  CAS  Google Scholar 

  112. Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99:2075.

    Article  PubMed  CAS  Google Scholar 

  113. Eiserich JP, Cross CE, Jones AD, Halliwell B, Van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid: A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996;271:19199.

    Article  PubMed  CAS  Google Scholar 

  114. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heinecke, J.W. (2000). Sources of Vascular Oxidative Stress. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics