Skip to main content

Why Things Bite Back: Unintended Consequences of Biological Weed Control

  • Chapter
Nontarget Effects of Biological Control

Abstract

There is an upside and a downside to the current “boom market” in biological control, the use of living organisms to control pests. The upside is that biological control provides a potentially effective control technique, an alternative to chemical pesticides, and an ecological foundation for pest control strategies. As a method of weed control, biological control can claim a growing number of successes. As of the end of 1996, there have been at least 1150 planned releases of 365 species of invertebrates and fungi on 133 weed species in 75 countries (Julien and Griffiths 1998). (1989) estimates that 25% of all releases made up until 1985 contributed to control; some recent estimates of success rates are higher (McFadyen 1998). As an alternative to chemical pesticides, biological control potentially reduces pesticide use and its undesirable effects on human health and the environment (OTA—U.S. Congress Office of Technology Assessment 1995). In contrast to chemicals, biological control organisms pose negligible human health risk, circumvent the problem of pest resistance (Holt and Hochberg 1997), and reduce the need for repeated and costly interventions to control invasive species, plants and animals that are not native to ecosystems they invade (OTA—U.S. Congress Office of Technology Assessment 1995). As an exercise in applied ecology, the scientific study of biological control systems has helped transform perspectives in pest control from an industrial to an ecological model (Levins 1986), fostering a sustainable pest control technology (Karban et al. 1997) that potentially (1) is effective, (2) requires low inputs of resources, (3) is self-perpetuating, (4) produces minimal pollution, (5) produces minimal effects on nontarget organisms, and (6) is compatible with other management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres, L. A. 1985. Interaction of Chrysolina quadrigemina and Hypericum spp. in California. In E. S. Delfosse (ed.), Proc. Sixth Intl. Symp. on Biological Control of Weeds, August 19–25, 1984, Agric. Canada, Ottawa. p. 235–239.

    Google Scholar 

  • Andres, L. A., and N. E. Rees. 1995. Musk thistle. In J. R. Nechols, L. A. Andres, J. W. Beardsley, R. D. Goeden, and C. G. Jackson (eds.), Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964–1989. Univ. California Div. Agric. Nat. Res., Oakland, California. p. 248–251.

    Google Scholar 

  • Balciunas, J., and B. Villegas. 1999. Two new seed head flies attack yellow starthistle. Calif. Agric. 53: 8–11.

    Google Scholar 

  • Barton, J., J. Crandon, D. Kennedy, and H. Miller. 1997. A model protocol to assess the risks of agricultural introductions. Nature Biotech. 15: 845–848.

    CAS  Google Scholar 

  • Beirne, B. R 1985. Avoidable obstacles to colonization in classical biological control of insects. Can. J. Zool. 63: 743–747.

    Google Scholar 

  • Bennett, F. D., and D. H. Habeck. 1995. Cactoblastis cactorum. A successful weed control agent in the Caribbean, now a pest in Florida? In E. S. Delfosse and R. R. Scott (eds.), Proc. 8th Intl. Symp. on Biological Control of Weeds, CSIRO Publishing, Melbourne, Australia. p. 21–26

    Google Scholar 

  • Bergelson, J., and M. J. Crawley. 1989. Can we expect mathematical models to guide biological control programs: a comment based on case studies of weed control. Comments on Theoretical Biol. 1: 197–215.

    Google Scholar 

  • Bernays, E. A., and R. F. Chapman. 1994. Host-plant selection by phytophagous insects. Chapman and Hall, New York. 312 p.

    Google Scholar 

  • Blossey, B., and Nötzold, R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83: 887–889.

    Google Scholar 

  • Blossey, B. 1996. What determines the increase competitive ability of invasive non-indigenous plants? In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996, Stellenbosch, South Africa, Univ. Cape Town, South Africa. p. 3–9.

    Google Scholar 

  • Briese, D. T. 1996. Biological control of weeds and fire management in protected natural areas: are they compatible strategies? Biol. Conserv. 77: 135–141.

    Google Scholar 

  • Briese, D. T. 1997. Biological control of St. John’s wort: past, present, and future. Plant Prot. Q. 12: 73–80.

    Google Scholar 

  • Briggs, C. J. 1993. Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am. Nat 141: 372–397.

    Google Scholar 

  • Briggs, C. J., R. M. Nisbet, and W. W. Murdoch. 1993. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44: 341–373.

    Google Scholar 

  • Bucher, G. E., and P. Harris. 1961. Food-plant spectrum and elimination of disease of cinnabar moth larvae, Hypocrita jacobaeae (L.) (Lepidoptera: Arctiidae). Can. Entomol. 93: 931–936.

    Google Scholar 

  • Burdon, J. J., R. H. Groves, and J. M. Cullen. 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J. Appl. Ecol. 18: 957–966.

    Google Scholar 

  • Caswell, H. 1997. Matrix methods for population analysis. In S. Tuljapurkar and H. Caswell (eds.), Structured-population models in marine, terrestrial, and freshwater systems. Chapman and Hall, New York. p. 19–58.

    Google Scholar 

  • Coombs, E. M., H. Radtke, D. Isaacson, and S. Snyder. 1996. Economic and regional benefits from the biological control of tansy ragwart, Senecio jacobea, in Oregon. In V. C. Moran and J. H. Hoffmann (eds.), Proc. IX Intl. Symp. on the Biological Control of Weeds, Stellenbosch, South Africa. p. 489–494.

    Google Scholar 

  • Coulson, J. R. 1992. Documentation of classical biological control introductions. Crop. Prot. 11: 195–205.

    Google Scholar 

  • Coulson, J. R., and R. S. Soper. 1989. Protocols for the introduction of biological control agents in the U.S. In R. P. Kahn (ed.), Plant protection and quarantine. CRC Press, Boca Raton, Florida. p. 1–35.

    Google Scholar 

  • Crawley, M. J. 1986. The population biology of invaders. Philos. Trans. Royal Soc. London, B, Biol. Sci. 314:711–731.

    Google Scholar 

  • Crawley, M. J. 1989a. Chance and timing in biological invasions. In J. A. Drake, H.A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmanek and M. Williamson (eds.), Biological invasions: a global perspective. John Wiley, New York. p. 407–423.

    Google Scholar 

  • Crawley, M. J. 1989b. Insect herbivores and plant population dynamics. Annu. Rev. Entomol. 34: 531–564.

    Google Scholar 

  • Crawley, M. J. 1989c. The successes and failures of weed biological control using insects. Biol. Control News Info. 10: 213–223.

    Google Scholar 

  • Crawley, M. J. 1990. Plant life-history and the success of weed biological control projects. In E. S. Delfosse (ed.), Proc. VII international symposium on biological control of weeds, 6–11 March 1988, Ministero deH’Agricoltura e delle Foreste, Rome, and CSIRO, Melbourne. p. 17–26.

    Google Scholar 

  • Cullen, J. M. 1990. Current problems in host specificity screening. In E. S. Delfosse (ed.), Proc. VII international symposium on biological control of weeds, 6–11 March 1988, Ministero dell’Agricoltura e delle Foreste, Rome, and CSIRO, Melbourne. p. 27–36.

    Google Scholar 

  • Dermo, R. F., M. S. McClure, and J. R. Ott. 1995. Interspecific interactions in phytophagous insects: Competition reexamined and resurrected. Annu. Rev. Entomol. 40: 297–331.

    Google Scholar 

  • Diehl, J., and P. B. McEvoy. 1990. Impact of the cinnabar moth (Tyria jacobaeae) on Senecio triangularis, a nontarget native plant in Oregon. In E. S. Delfosse (ed.), Proc. VII Intl. Symp. on Biological Control of Weeds, 6–11 March 1988, Ministero dell’Agricoltura e delle Foreste, Rome, and CSIRO, Melbourne. p. 119–126.

    Google Scholar 

  • Ehler, L. 1991. Planned introductions in biological control. In L. Ginzburg (ed.), Assessing Ecological Risks of Biotechnology. Butterworth-Heinemann, Boston. p. 21–39.

    Google Scholar 

  • FAO. 1994. Code of conduct for the import and release of biological control agents. Draft version, FAO, Rome. 14 p.

    Google Scholar 

  • Fowler, S. V., H. M. Harman, J. Memmott, Q. Paynter, R. Shaw, S.A.W., and P. Syrett. 1996. Comparing the population dynamics of broom, Cytisus scoparius, as a native plant in the United Kingdom and France and as an invasive alien weed in Australia and New Zealand. In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996, Stellenbosch, South Africa, Univ. of Cape Town, South Africa. p. 19–26.

    Google Scholar 

  • Goeden, R. D. 1983. Critique and revision of Harris’ scoring system for selection of insect agents in biological control of weeds. Prot. Ecol. 5: 287–301.

    Google Scholar 

  • Goeden, R. D. 1995a. Italian thistle. In J. R. Nechols, L. A. Andres, J. W. Beardsley, R. D. Goeden and C. G. Jackson (eds.), Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964–1989. Univ. California Div. Agric. Nat. Res., Oakland, California. p. 242–244.

    Google Scholar 

  • Goeden, R. D. 1995b. Milk thistle. In J. R. Nechols, L. A. Andres, J. W. Beardsley, R. D. Goeden and C. G. Jackson (eds.), Biological control in the western United States: accomplishments and benefits of regional research project W-84, 1964–1989. Univ. California Div. Agric. Nat. Res., Oakland, California. p. 245–247.

    Google Scholar 

  • Goeden, R. D., and S. M. Louda. 1976. Biotic interference with insects imported for weed control. Annu. Rev. Entomol. 21: 325–342.

    Google Scholar 

  • Grevstad, F. S. 1996. Establishment of weed control agents under the influences of demographic stochasticity, environmental variability and Allee effects. In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996, Stellenbosch, South Africa, Univ. Cape Town, South Africa. p. 19–26.

    Google Scholar 

  • Grevstad, F. S. 1999. Factors influencing the chance of population establishment: implications for release strategies in biological control. Ecol. Appl. In press

    Google Scholar 

  • Gruber, E., and A. Whytemare. 1997. The return of the native? Sidalcea hirtipes in coastal Oregon. In T. N. Kaye, A. Liston, R. M. Love, D. L. Luoma, R. J. Meinke and M. V. Wilson (eds.), Conservation and management of native plants and fungi. Native Plant Soc. Oregon, Corvallis, Oregon. p. 121–124.

    Google Scholar 

  • Harley, K. L. S., and I. W. Forno. 1992. Biological control of weeds: a handbook for practitioners and students. Inkata Press, Melbourne, Australia. 74 p.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, New York. 892 p.

    Google Scholar 

  • Harper, J. L. 1982. After description. In E. I. Newman (ed.), The plant community as a working mechanism. Blackwell Scientific Publications, Boston, Massachusetts. p. 11–25.

    Google Scholar 

  • Harris, P. 1973. The selection of effective agents for the biological control of weeds. Can. Entomol. 105: 1495–1503.

    Google Scholar 

  • Harris, P. 1981. Stress as a strategy in the biological control of weeds. In G. C. Papavizas (ed.), Biological control and crop protection. Allahheld, Osmun, Totowa, New Jersey. p. 333–340.

    Google Scholar 

  • Harris, P. 1988. Environmental impact of weed-control insects. BioScience 38: 542–548.

    Google Scholar 

  • Harris, P. 1989. The use of Tephritidae forthe biological control of weeds. Biol Control News Info. 10: 7–16.

    Google Scholar 

  • Harris, P. 1990. Feeding strategy, coexistence and impact of insects in spotted knapweed capitula. In E. S. Delfosse (ed.), Proc. VII Intl. Symp. on Biological Control of Weeds, March 6–11, 1988, Ministero dell’Agricoltura e delle Foreste, Rome, and CSIRO, Melbourne. p. 39–47.

    Google Scholar 

  • Harris, P. 1997. Monitoring and impact of weed biological control agents. In D. A. Andow, D. W. Ragsdale and R. F. Nyvall (eds.), Ecological interactions and biological control. Westview Press, Boulder, Colorado. p. 215–223.

    Google Scholar 

  • Harris, P., and P. McEvoy. 1995. The predictability of insect host plant utilization from feeding tests and suggested improvements for screening weed biological control agents. In E. S. Delfosse and R. R. Scott (eds.), Proc. Eighth Intl. Symp. on Biological Control of Weeds, February 2–7, 1992, DSIR/CSIRO, Melbourne. p. 125–131.

    Google Scholar 

  • Holt, R. D., and M. E. Hochberg. 1997. When is biological control evolutionarily stable (or is it). Ecol. 78: 1673–1683.

    Google Scholar 

  • Howarth, F. G. 1983. Classical biological control: panacea or Pandora’s box. Proc. Hawaiian Entomol. Soc. 24: 239–244.

    Google Scholar 

  • Howarth, F. G. 1991. Environmental impacts of classical biological control. Annu. Rev. Entomol. 36: 485–509.

    Google Scholar 

  • Huffaker, C. B., and C. E. Kennett. 1959. A ten-year study of vegetational changes associated with biological control of Klamath Weed. J. Range Mgt. 12: 69–82.

    Google Scholar 

  • Hughes, C. E. 1994. Risks of species introductions in tropical forestry. Commonwealth Forestry Rev. 73: 243–252.

    Google Scholar 

  • James, R., J. C. Miller, and B. Lighthart. 1993. Bacillus thurlngiensis var. kurstaki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae). J. Econ. Entomol. 86: 334–339.

    Google Scholar 

  • Julien, M. H. 1989. Biological control of weeds worldwide: trends, rates of success and the future. Biol. Control News Info. 10: 299–306.

    Google Scholar 

  • Julien, M. H., and M. W. Griffiths (eds.), 1998. Biological control of weeds. A world catalogue of agents and their target weeds. CABI Publishing, CAB International, Wallingford, UK. 240 p.

    Google Scholar 

  • Kakehashi, N., Y. Suzuki, and Y. Iwasa. 1984. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy. J. Appl. Ecol. 21: 115–131.

    Google Scholar 

  • Karban, R., and G. M. English-Leob. 1990. A “vaccination” of Willamette spider mites (Acari: Tetranychidae) to prevent large populations of Pacific spider mites on grapevines. J. Econ. Entomol. 83: 2252–2257.

    Google Scholar 

  • Karban, R., G. English-Loeb, and D. Hougen-Eitzmann. 1997. Mite vaccinations for sustainable management of spider mites in vineyards. Ecol. Appl. 7: 183–193.

    Google Scholar 

  • Karban, R., G. M. English-Loeb, and P. Verdigaal. 1991. Vaccinating grapevines against spider mites. Calif. Agric. 45: 18–21.

    Google Scholar 

  • Klingman, D. L., and J. R. Coulson. 1983. Guidelines for introducing foreign organisms into the United States for the biological control of weeds. Bull. Entomol. Soc. Am., Fall 1983: 55–61.

    Google Scholar 

  • Levin, S. A. 1989. Analysis of risk for invasions and control programs. In J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmanek and M. W. Williamson (eds.), Biological Invasions: a global perspective. John Wiley, New York. p. 425–435.

    Google Scholar 

  • Levin, S. A. 1990. Ecological issues related to the release of genetically modified organisms into the environment. In H. A. Mooney and G. Bernardi (eds.), Introduction of genetically modified organisms into the environment. John Wiley, New York. p. 151–159.

    Google Scholar 

  • Levins, R. 1986. Perspectives in integrated pest management: from an industrial to ecological model of pest management. In M. Kogan (ed.), Ecological theory and integrated pest management practice. John Wiley, New York. p. 1–18.

    Google Scholar 

  • Lockwood, J. A. 1993. Environmental issues involved in biological control of rangeland grasshoppers (Orthoptera: Acrididae) with exotic agents. Environ. Entomol. 22: 505–518.

    Google Scholar 

  • Lonsdale, W. M. 1994. Inviting trouble: introduced pasture species in northern Australia. Aust. J. Ecol. 19: 345–354.

    Google Scholar 

  • Lonsdale, W. M., G. Farrell, and C. G. Wilson. 1995. Biological control of a tropical weed: a population model and an experiment for Sida acuta. J. Appl. Ecol. 32: 391–399.

    Google Scholar 

  • Louda, S. M. 1998. Ecology of interactions needed in biological control practice and policy. Bull. Brit. Ecol. Soc. 29: 8–11.

    Google Scholar 

  • Louda, S. M., D. Kendall, J. Connor, and D. Simberloff. 1997. Ecological effects of an insect introduced for the biological control of weeds. Science 277: 1088–1090.

    CAS  Google Scholar 

  • Ludwig, D., R. Hilborn, and C. Walters. 1993. Uncertainty, resource exploitation, and conservation: lessons from history. Science 260: 17, 36.

    PubMed  CAS  Google Scholar 

  • Luken, J. O. 1990. Directing ecological succession. Chapman and Hall, New York. 251 p.

    Google Scholar 

  • Marohasy, J. 1998. The design and interpretation of host-specificity tests for weed biological control with particular reference to insect behaviour. Biol. Control News Info. 19: 13N–20N.

    Google Scholar 

  • May, R. M., and M. P. Hassell. 1981. The dynamics of multiparasitoid-host interactions. Am. Nat. 117: 234–261.

    Google Scholar 

  • McClay, A. S. 1989. Selection of suitable target weeds for classical biological control in Alberta. Alberta Environmental Centre, Vegreville, Alberta, Canada. 97 p.

    Google Scholar 

  • McClay, A. S. 1995. Beyond “before-and-after”: experimental design and evaluation in classical weed biological control. In E. S. Delfosse and R. R. Scott (eds.), Proc. VIII international symposium on biological control of weeds, February 2–7, 1992, DSIR/CSIRO, Melbourne. p. 213–219.

    Google Scholar 

  • McEvoy, P. B. 1996. Host specificity and biological pest control. BioScience 46: 401–405.

    Google Scholar 

  • McEvoy, P. B., and E. M. Coombs 1999. Biological control of plant invaders: Regional patterns, field experiments, and structured population models. Ecol. Appl. 9: 387–401.

    Google Scholar 

  • McEvoy, P. B., C. Cox, and E. Coombs. 1991. Successful biological control of ragwort, Senecio jacobaea, by introduced insects in Oregon. Ecol. Appl. 1: 430–442.

    Google Scholar 

  • McEvoy, P. B., and N. T. Rudd. 1993. Effects of vegetation disturbances on insect biological control of tansy ragwort Senecio jacobaea. Ecol. Appl. 3: 682–698.

    Google Scholar 

  • McEvoy, P. B., N. T. Rudd, C. S. Cox, and M. Huso. 1993. Disturbance, competition, and herbivory effects on ragwort Senecio jacobaea populations. Ecol. Monogr. 63: 55–75.

    Google Scholar 

  • McFadyen, R. E. C. 1998. Biological control of weeds. Annu. Rev. Entomol. 43: 369–393.

    PubMed  CAS  Google Scholar 

  • Memmott, J., S. V. Fowler, H. M. Harman, and L. M. Hayes. 1996. How best to release a biological control agent. In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996, Stellenbosch, South Africa, Univ. Cape Town, South Africa. p. 291–296.

    Google Scholar 

  • Miller, M., and G. Aplet. 1993. Biological control: a little knowledge is a dangerous thing. Rutgers Law Rev. 45: 285–334.

    Google Scholar 

  • Moran, V. C. 1985. The Silwood International Project on the biological control of weeds. In E. S. Delfosse (ed.), Proc. VI Intl. Symp. on Biological Control of Weeds, August 19–25, 1984, Agriculture Canada, Ottawa, Canada, Vancouver, British Columbia, Canada. p. 65–68.

    Google Scholar 

  • Müller, H. 1990. An experimental and phytocentric approach for selecting effective biological control agents: insects on spotted and diffuse knapweed, Centaurea maculosa and C. diffusa (Compositae). In E. S. Delfosse (ed.), Proc. VII international symposium on biological control of weeds, 6–11 March 1988, Ministero dell’Agricoltura e delle Foreste, Rome, and CSIRO, Melbourne. p. 181–190

    Google Scholar 

  • Müller, H., and D. Schroeder. 1989. The biological control of diffuse and spotted knapweed in North America—what did we learn? In P. K. Fay and J. R. Lacey (eds.), Proc. 1989 knapweed symposium, Montana State Univ., Bozeman, Montana. p. 151–169.

    Google Scholar 

  • Myers, J. H. 1985. How many insect species are necessary for successful biological control of weeds? In E. S. Delfosse (ed.), Proc. VI Intl. Symp. on Biological Control of Weeds, August 19–25, 1984, Agriculture Canada, Ottawa. p. 77–82.

    Google Scholar 

  • Newman, R. M., D. C. Thompson, and D. B. Richman. 1998. Conservation strategies for biological control of weeds. In P. Barbosa (ed.), Conservation biological control. Academic Press, San Diego, California. p. 371–396.

    Google Scholar 

  • Nowierski, R. M., C. B. Huffaker, D. L. Dahlsten, D. K. Letourneau, D. H. Janzen, and G. G. Kennedy. 1999. The influence of insects on plant populations and communities. In C. B. Huffaker and A. P. Gutierrez (eds.), Ecological Entomology. John Wiley, New York. p. 585–642.

    Google Scholar 

  • O’Brien, C. W. 1995. Curculionidae premier biological control agents (Coleoptera: Curculionidae). Mem. Entomol. Soc. Washington 14: 119–128.

    Google Scholar 

  • O’Riordan, T., and J. Cameron (eds.), 1994. Interpreting the precautionary principle. Earthscan Publications, London. 315 p.

    Google Scholar 

  • Osenberg, C. W., and R. J. Schmitt. 1996. Detecting ecological impacts caused by human activities. In R. J. Schmitt and C. W. Osenberg (eds.), Detecting ecological impacts. Academic Press, New York. p. 3–16.

    Google Scholar 

  • OTA—U.S. Congress Office of Technology Assessment. 1993. Harmful non-indigenous species in the United States, OTA-F-565. U.S. Govt. Printing Office, Washington, D.C. 391 p.

    Google Scholar 

  • OTA—U.S. Congress Office of Technology Assessment. 1995. Biologically based technologies for pest control, OTA-ENV-636. U.S. Govt. Printing Office, Washington, D.C. 204 p.

    Google Scholar 

  • Pemberton, R. W. 1995. Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States: An immigrant biological control agent or an introduction of the nursery industry? Am. Entomol. 41: 230–232.

    Google Scholar 

  • Peschken, D. P., and A. S. McClay. 1995. Picking the target: a revision of McClay’s scoring system to determine the suitability of a weed for classical biological control. In E. S. Delfosse and R. R. Scott (eds.), Proc. 8th Intl. Symp. on Biological Control of Weeds, CSIRO Publishing, Melbourne, Australia. p. 137–143.

    Google Scholar 

  • Price, P. W. 1980. Evolutionary biology of parasites. Princeton Univ. Press, Princeton, New Jersey. 237 p.

    Google Scholar 

  • Rees, M., and Q. Paynter. 1997. Biological control of Scotch broom: modeling the determinants of abundance and the potential impact of introduced insect herbivores. J. Appl. Ecol. 34: 1203–1221.

    Google Scholar 

  • Rees, N. E., J. P.C. Quimby, G. L. Piper, E. M. Coombs, C. E. Turner, N. R. Spencer, and L. V. Knutson (eds.). 1996. Biological control of weeds in the West. Western Soc. Weed Sci., Bozeman, Montana.

    Google Scholar 

  • Reichard, S. H., and C. W. Hamilton. 1997. Predicting invasions of woody plants introduced into North America. Conserv. Biol. 11: 193–203.

    Google Scholar 

  • Rejmánek, M., and D. M. Richardson. 1996. What attributes make some plant species more invasive. Ecol. 77: 1655–1661.

    Google Scholar 

  • Ruesink, J., I. M. Parker, M. J. Groom, and P. Kareiva. 1995. Guilty until proven innocent: reducing the risk of non-indigenous species introductions. BioScience 45: 465–477.

    Google Scholar 

  • Secord, D., and P. Kareiva. 1996. Perils and pitfalls in the host specificity paradigm. Bioscience 46: 448–453.

    Google Scholar 

  • Shea, K., and D. Kelly. 1998. Estimating biological control agent impact with matrix models: Carduus nutans in New Zealand. Ecol. Appl. 8: 824–832.

    Google Scholar 

  • Sheldon, S. P. 1997. Ecological approaches for biological control of the aquatic weed Eurasian watermilfoil: resource and interference competition, exotic and endemic herbivores and pathogens. In D. A. Andow, D. W. Ragsdale and R. F. Nyvall (eds.), Ecological interactions and biological control. Westview Press, Boulder, Colorado. p. 53–70.

    Google Scholar 

  • Sheppard, A. W. 1992. Predicting biological weed control. Trends Ecol. Evol. 7: 290–291.

    PubMed  CAS  Google Scholar 

  • Shigesada, N., and K. Kawasaki. 1997. Biological invasions: theory and practice. Oxford Univ. Press, New York. 205 p.

    Google Scholar 

  • Simberloff, D. 1992. Conservation of pristine habitats and unintended effects of biological control. In W. C. Kauffman and J. E. Nechols (eds.), Selection criteria and ecological consequences of importing natural enemies. Entomol. Soc. Am., Lanham, Maryland. p. 103–117.

    Google Scholar 

  • Simberloff, D., and P. Stiling. 1996a. How risky is biological control? Ecol. 77: 1965–1974.

    Google Scholar 

  • Simberloff, D., and P. Stiling. 1996b. Risks of species introduced for biological control. Biol. Conserv. 78: 185–192.

    Google Scholar 

  • Soper, R. S. 1992. USDA, Agricultural Research Service National Biological Control Program: program, policy, and constraints. In R. Charudattan and H. W. Browning (eds.), Regulations and guidelines: critical issues in biological control. Proc. of a USDA/CSRS National Workshop. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida. p. 49–52.

    Google Scholar 

  • Stewart, A. J. A. 1996. Interspecific competition reinstated as an important force structuring insect herbivore communities. Trends Ecol. Evol. 11: 233–234.

    PubMed  CAS  Google Scholar 

  • Story, J. M., K. W. Boggs, W. R. Good, P. Harris, and R. M. Nowierski. 1991. Metzneria paucipunctella Zeller (Lepidoptera: Gelechiidae), a moth introduced against spotted knapweed: its feeding strategy and impact on two introduced Urophora spp. (Diptera: Tephritidae). Can. Entomol. 123: 1001–1007.

    Google Scholar 

  • Syrett, P., S. V. Fowler, and R. M. Emberson. 1996. Are chrysomelid beetles effective agents for biological control of weeds? In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996, Stellenbosch, South Africa, Univ. Cape Town, South Africa. p. 399–407.

    Google Scholar 

  • Tenner, E. 1996. Why things bite back: Technology and the revenge of unintended consequences. Knopf, New York. 349 p.

    Google Scholar 

  • Thomas, M. B., and A. J. Willis. 1998. Biological control—risky but necessary. Trends Ecol. Evol. 13: 325–329.

    PubMed  CAS  Google Scholar 

  • Thompson, D. Q., R. L. Stuckey, and E. B. Thompson. 1987. Spread, impact and control of purple loosestrife (Lythrum salicaria) in north american wetlands. U.S. Fish and Wildlife Res., Washington D.C. 55 p.

    Google Scholar 

  • Tuljapurkar, S., and H. Caswell (eds.). 1997. Structured-population models in marine, terrestrial, and freshwater systems. Chapman and Hall, New York. 643 p.

    Google Scholar 

  • Turner, C. E., R. W. Pemberton, and S. S. Rosenthal. 1987. Host utilization of native Cirsium thistles (Asteraceae) by the introduced weevil RhInocyllus conicus (Coleoptera: Curculionidae) in California. Environ. Entomol. 16: 111–115.

    Google Scholar 

  • USDA. 1999. Reviewer’s manual for the technical advisory group for biological control agents of weeds. Manuals Unit, Plant Protection and Quarantine, Animal and Plant Health Inspection Svc, U.S. Dept. Agric.

    Google Scholar 

  • USDA. 1997. The PLANTS database (http: //plants.usda.gov). National Plant Data Center, Baton Rouge, Louisiana.

    Google Scholar 

  • van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453–483.

    PubMed  Google Scholar 

  • Wapshere, A. J. 1974. A strategy for evaluating the safety of organisms for biological weed control. Ann. Appl. Biol. 77:201–211.

    Google Scholar 

  • Wapshere, A. J. 1985. Effectiveness of biological control agents for weeds: present quandaries. Agric. Ecosys. Environ. 13: 261–280.

    Google Scholar 

  • Wapshere, A. J., E. S. Delfosse, and J. M. Cullen. 1989. Recent developments in biological control of weeds. Crop. Prot. 8: 227–250.

    Google Scholar 

  • Weidemann, G., and D. O. Tebeest. 1990. Biology of host range testing for biological control of weeds. Weed Technol. 4: 465–470.

    Google Scholar 

  • Wilcove, D. S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos. 1998. Quantifying threats to imperiled species in the United States. BioScience 48: 607–615.

    Google Scholar 

  • Williamson, M. 1996. Biological invasions. Chapman and Hall, London. 244 p.

    Google Scholar 

  • Wolpert, L. 1999. Is science dangerous. Nature 398: 281–282.

    PubMed  CAS  Google Scholar 

  • Woodburn, T. L. 1996. Interspecific competition between Rhinocyllus conicus and Urophora solstitialis, two biological control agents released in Australia against Carduus nutans. In V. C. Moran and J. H. Hoffman (eds.), Proc. IX Intl. Symp. on Biological Control of Weeds, January 19–26, 1996 Stellenbosch, South Africa, Univ. Cape Town, South Africa. p. 409–415.

    Google Scholar 

  • Zwölfer, H. 1973. Competition and coexistence in phytophagous insects attacking the heads of Carduus nutans L. In P. H. Dunn (ed.), Proc. Second Intl. Symp. on Biological Control of Weeds, October 4–7, 1971, Misc. Publ. no. 6, Commonwealth Inst. Biol. Control, Commonwealth Agric. Bur., Farnham Royal, Slough, UK. p. 74–77.

    Google Scholar 

  • Zwölfer, H., and P. Harris. 1971. Host specificity determination of insects for biological control of weeds. Annu. Rev. Entomol. 16: 159–178.

    Google Scholar 

  • Zwölfer, H., and P. Harris. 1984. Biology and host specificity of Rhinocyllus conicus (Froel.) (Col., Curculionidae), a successful agent for biological control of the thistle, Carduus nutans L. Z. Angew. Entomol. 97: 36–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

McEvoy, P.B., Coombs, E.M. (2000). Why Things Bite Back: Unintended Consequences of Biological Weed Control. In: Follett, P.A., Duan, J.J. (eds) Nontarget Effects of Biological Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4577-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4577-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7067-3

  • Online ISBN: 978-1-4615-4577-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics