Skip to main content

Abstract

Nitrate contamination, often associated with agricultural activities, is a major problem in some shallow aquifers and is increasingly becoming a threat to groundwater supplies (Gillham and Cherry, 1978; Ronen et al., 1983; Spalding and Exner, 1991). The intake of high levels of nitrate can cause methemoglobinemia in infants, and there is substantial evidence collected from animal experiments that N-nitroso compounds are carcinogens. Similar conclusive evidence is not yet available for humans but many observations suggest that these compounds can function as initiators of human carcinogenesis. These findings are the basis for the maximum permissible limit of 10 ppm nitrate-N (50 ppm as NO3) in drinking water set by the World Health Organization and the U.S. Environmental Protection Agency. The impact of high loading of nutrients such as nitrate and phosphorous from agricultural practices via groundwater into surface water is also a major environmental concern, causing eutrophication of streams, rivers and lakes (Hill, 1978; Böhlke and Denver, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal P.K. and Dillon M.A. (1998) Stable isotope composition of molecular oxygen in soil gas and groundwater: a potentially robust tracer for diffusion and oxygen consumption processes. Geochim. Cosmochim. Acta 62, 577–584.

    Article  CAS  Google Scholar 

  • Amberger A. and Schmidt H.L. (1987) Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim. Cosmochim. Acta 51, 2699–2705.

    Article  CAS  Google Scholar 

  • Andersson K.K. and Hooper A.B. (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15N evidence. FEBS Letters 164, 236–240.

    Article  CAS  Google Scholar 

  • Aravena R., Evans M.L. and Cherry J.A. (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31, 180–186.

    Article  CAS  Google Scholar 

  • Aravena R. and Robertson W.D. (1998) Use of multiple isotope tracers to evaluate denitrification in groundwater: case study of nitrate from a large-flux septic system plume. Ground Water 36, 975–982.

    Article  CAS  Google Scholar 

  • Batchelor B. and Lawrence A.W. (1978) A kinetic model for autotrophic denitrification using elemental sulfur. Water Res. 12, 1075–1084.

    Article  CAS  Google Scholar 

  • Böhlke J.K. and Coplen T.B. (1995) Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA TECDOC 825, pp. 51–66. IAEA, Vienna.

    Google Scholar 

  • Böhlke J.K. and Denver J.M. (1995) Combined use of ground-water dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour. Res. 31, 2319–2339.

    Article  Google Scholar 

  • Böhlke J.K., Eriksen G.E. and Revesz K. (1997) Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chem. Geol. (hot. Geosci. Sect.) 136, 135–152.

    Google Scholar 

  • Böhlke J.K., Gwinn C.J. and Coplen T.B. (1993) New reference materials for nitrogen-isotope-ratio measurements. Geostandards Newsletter 17, 159–164.

    Article  Google Scholar 

  • Böttcher J., Strebel O., Voerkelius S. and Schmidt H.L. (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 11, 413–424.

    Article  Google Scholar 

  • Broadbent F.E., Rauschkolb R.S., Lewis K.A. and Chang G.Y. (1980) Spatial variability in nitrogen-15 and total nitrogen in some virgin and cultivated soils. Soil Sci. Soc. Amer. J. 44, 524–527.

    Article  CAS  Google Scholar 

  • Chang C.C.Y., Langsten J., Riggs M., Campbell D.H., Silva S.R. and Kendall C. (1999) A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrations. Can. J. Fish. Aq. Sc, in press.

    Google Scholar 

  • Cey E.E., Rudolph D.J., Aravena R. and Parkin G. (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contain. Hydrol. 37, 45–67.

    Article  CAS  Google Scholar 

  • Delwiche C.C. and Steyn P.L. (1970) Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol. 4, 929–935.

    Article  CAS  Google Scholar 

  • DiGnazio F.J., Krothe N.C., Baedke S.J. and Spalding R.F. (1998) δ15N of nitrate derived from explosive sources in a karst aquifer beneath the Ammunition Burning Ground, Crane Naval Surface Warfare Center, Indiana, USA. J. Hydrol. 206, 164–175.

    Article  CAS  Google Scholar 

  • Durka W., Schulze E.-D., Gebauer G. and Voerkelius S. (1994). Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372, 765–767.

    Article  CAS  Google Scholar 

  • Feigin A., Shearer G., Kohl D.H. and Commoner B. (1974) The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation. Soil Sci. Soc. Amer. Proc. 38, 465–471.

    Article  CAS  Google Scholar 

  • Feuerstein T.P., Ostrom P.H. and Ostrom N.E. (1997) Isotopic biogeochemistry of dissolved organic nitrogen: a new technique and application. Org. Geochem. 27, 363–370.

    Article  CAS  Google Scholar 

  • Fitzgerald D. (1997) The influence of hydrogeology on the attenuation of nitrate in groundwater within a riparian zone/floodplain system. Unpubl. MS thesis, Department of Geography, University of Toronto, 60 pp.

    Google Scholar 

  • Flipse W.J. and Bonner F.T. (1985) Nitrogen-isotope ratios of nitrate in groundwater under fertilized fields, Long Island, New York. Ground Water 23, 59–67.

    Article  CAS  Google Scholar 

  • Fogg G.E., Rolston D.E., Decker D.L., Louie D.T. and Grismer M.E. (1998) Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water 36, 418–426.

    Article  CAS  Google Scholar 

  • Garten Jr. C.T. (1992) Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. Int. J. Environ. Anal. Chem. 47, 33–45.

    Article  CAS  Google Scholar 

  • Gebauer G. and Dietrich P. (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Environ. Health Stud. 29, 35–44.

    Article  CAS  Google Scholar 

  • Gilliam J.W. (1994) Riparian wetlands and water quality. J. Environ. Qual. 23, 896–900.

    Article  Google Scholar 

  • Gillham R.W. and Cherry J.A. (1978) Field evidence of denitrification in shallow groundwater flow systems. Water Pollut. Res. Can. 13, 53–71.

    Google Scholar 

  • Ging P.B., Lee R.W. and Silva S.R. (1996) Water chemistry of Shoal Creek and Waller Creek, Austin Texas, and potential sources of nitrate. U.S. Geological Survey, Water Resources Investigations Report 96-4167.

    Google Scholar 

  • Gormly J.R. and Spalding R.F. (1979) Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water 3, 291–301.

    Article  Google Scholar 

  • Harrington R.R., Kennedy B.P., Chamberlain C.P., Blum J.D. and Folt C.L. (1998) 15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chem. Geol. 147, 281–294.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. (1984) Sources of the nitrate in phreatic groundwater in the western Kalahari. J. Hydrol. 67, 249–269.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 5, 87–102.

    Article  Google Scholar 

  • Heaton T.H.E. (1990) 15N/14N ratios of NOX from vehicle engines and coal-fired power stations. Tellus 42B, 304–307.

    CAS  Google Scholar 

  • Heaton T.H.E., Spiro B., Madeline S. and Robertson C. (1997) Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia 109, 600–607.

    Article  Google Scholar 

  • Heaton T.H.E., Talma A.S. and Vogel J.C. (1983) Origin and history of nitrate in confined groundwater in the western Kalahari. J. Hydrol. 62, 243–262.

    Article  CAS  Google Scholar 

  • Hill A.R. (1978) Factors affecting the export of nitrate-nitrogen from drainage basins in southern Ontario. Water Res. 12, 1045–1057.

    Article  CAS  Google Scholar 

  • Hill A.R. (1996) Nitrate removal in stream riparian zones. J. Environ. Qual. 25, 743–755.

    Article  CAS  Google Scholar 

  • Högberg P. (1997) 15N natural abundance in soil-plant systems. New Phytol. 137, 179–203.

    Article  Google Scholar 

  • Hollocher T.C. (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch. Biochem. Biophy. 233, 721–727.

    Article  CAS  Google Scholar 

  • Hübner H. (1986) Isotope effects of nitrogen in the soil and biosphere. In Handbook of Environmental Isotope Geochemistry: The Terrestrial Environment, eds. P. Fritz and J.-C. Fontes, Vol. 2, pp. 361–425. Elsevier, Amsterdam.

    Google Scholar 

  • Jacobs T.C. and Gilliam J.W. (1985) Riparian losses of nitrate from agricultural drainage waters. J. Environ. Qual. 14, 472–478.

    Article  CAS  Google Scholar 

  • Junk G. and Svec H. (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta 1, 234–243.

    Article  Google Scholar 

  • Kaplan N. and Magaritz M. (1986) A nitrogen-isotope study of the sources of nitrate contamination in groundwater of the Pleistocene coastal plain aquifer, Israel. Water Res. 20, 131–135.

    Article  CAS  Google Scholar 

  • Karamanos E.E. and Rennie D.A. (1980) Variations in natural N-15 abundance as an aid in tracing fertilizer transformations. Soil Sci. Soc. Amer. J. 44, 57–62.

    Article  CAS  Google Scholar 

  • Kendall C. (1998) Tracing sources and cycling of nitrate in catchments, In Isotope Tracers in Catchment Hydrology, eds. C. Kendall and J. J. McDonnell, pp. 519–576. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Kendall C., Campbell D.H., Burns D.A., Shanley J.B., Silva S.R. and Chang C.C.Y. (1995) Tracing sources of nitrate in snowmelt runoff using the oxygen and nitrogen isotopic compositions of nitrate. In Biogeochemistry of Seasonally Snow-Covered Catchments, eds. K. Tonnessen, M. Williams, and M. Tranter, pp. 339–347. Intern. Assoc. Hydrol. Sci., Boulder CO.

    Google Scholar 

  • Kendall C., Silva S.R., Chang C.C.Y., Burns D.A., Campbell D.H. and Shanley J.B. (1996) Use of the δ18O and δ15O of nitrate to determine sources of nitrate in early spring runoff in forested catchments. Isotopes in Water Resources Management, Vol. 1, pp. 167–176. IAEA, Vienna.

    Google Scholar 

  • Kendall C., Silva S.R., Stober Q.J. and Meyer P. (1998) Mapping spatial variability in marsh redox conditions in the Florida everglades using biomass stable isotopic compositions. EOS, Trans. Am. Geophys. union 79, S88.

    Google Scholar 

  • Kendall C., Battaglin W.A., Cabana G., Porter S.D., Goolsby D.A., Campbell D.H., Chang C.C., Silva S.R., Hooper R.P. and Schmitt C.J. (1999) Isotopic tracing of nitrogen sources and cycling in the Mississippi River Basin. In Subsurface Contamination from Point Sources, Vol. 2, eds. D.W. Morganwalp and H.T. Buxton, pp. 339-344. U.S. Geological Survey, Water Resources Investigations Report 99-40I8B.

    Google Scholar 

  • Koba K., Tokuchi N., Wada E., Nakajima T. and Iwatsubo G. (1997) Intermittent denitrification: the application of a l5N natural abundance method to a forested ecosystem. Geochim. Cosmochim. Acta 61, 5043–5050.

    Article  CAS  Google Scholar 

  • Klots C.E. and Benson B.B. (1963) Isotope effect in the solution of oxygen and nitrogen in distilled water. J. Chem. Phys. 38, 890–892.

    Article  CAS  Google Scholar 

  • Knowles R. and Blackburn T.H. eds. (1993) Nitrogen Isotope Techniques. Academic Press, 311pp.

    Google Scholar 

  • Komor S.C. and Magner J.A. (1996) Nitrate in groundwater and water sources used by riparian trees in an agricultural watershed: a chemical and isotopic investigation in southern Minnesota. Water Resour. Res. 32, 1039–1050.

    Article  CAS  Google Scholar 

  • Kornexl B.E., Gehre M. and Höfling R. (1999) On-line δ18O measurement of organic and inorganic solids. Rapid Commun. Mass Spectrom. 13, 1685–1693.

    Article  CAS  Google Scholar 

  • Korom S.F. (1992) Natural denitrification in the saturated zone: a review. Water Resour. Res. 28, 1657–1668.

    Article  CAS  Google Scholar 

  • Kreitler C.W. (1975) Determining the source of nitrate in groundwater by nitrogen isotope Investigations 83, 57 pp.

    Google Scholar 

  • Kreitler C.W. (1979) Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J. Hydrol. 42, 147–170.

    Article  CAS  Google Scholar 

  • Kreitler C.W. and Browning L.A. (1983) Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: natural sources versus human pollution. J. Hydrol. 61, 285–301.

    Article  CAS  Google Scholar 

  • Kreitler C.W. and Jones D.C. (1975) Natural soil nitrate: the cause of the nitrate contamination of groundwater in Runnels County, Texas. Ground Water 13, 53–61.

    Article  Google Scholar 

  • Kroopnick P.M. and Craig H. (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175, 54–55.

    Article  CAS  Google Scholar 

  • Kumar S., Nicholas D.J.D. and Williams E.H. (1983) Definitive 15N NMR evidence that water serves as a source of ‘O’during nitrite oxidation by Nitrobacter agilis. FEBS Letters 152, 71–74.

    Article  CAS  Google Scholar 

  • Lowrance R., Leonard, R. and Sheridan, J. (1985) Managing riparian ecosystems to control nonpoint pollution. J. Soil Water Conserv. 40, 87–91.

    Google Scholar 

  • Macko S.A. and Ostrom N.E. (1994) Pollution studies using nitrogen isotopes. In Stable Isotopes in Ecology and Environmental Science, eds. K. Lajtha and R.M. Michener, pp. 45–62. Blackwell Scientific Publishers, Oxford.

    Google Scholar 

  • Mariotti A. (1986) Denitrification in groundwaters, principles and methods for its identification. A review. J. Hydrol. 88, 1–23.

    Article  CAS  Google Scholar 

  • Mariotti A., Germon J.C., Hubert P., Kaiser P. Letolle R., Tardieux A. and Tardieux P. (1981) Experimental determinatiuon of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430.

    Article  CAS  Google Scholar 

  • Mariotti A., Mariotti F., Amarger N., Pizelle G., Ngambi J.M., Champigny M.L. and Moyse A. (1980) Fractionnements isotopique de l’azote atmospheric par les plantes. Physiol. Veg. 18, 163–181.

    CAS  Google Scholar 

  • Mariotti A., Germon J.C. and Leclerc A. (1982) Nitrogen isotope fractionation associated with the NO2→N2O step of denitrification in soils. Can. J. Soil Sci. 62, 227–241.

    Article  CAS  Google Scholar 

  • Mariotti A., Landreau A. and Simon B. (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869–1878.

    Article  CAS  Google Scholar 

  • Mariotti A. and Letolle R. (1977) Application de l’tude isotopique de l’azote en hydrologie et en hydrogeologie-analyse des resultats obtenus sur un exemple precis: Le Bassin de Melarchez (Scine-et-Marne, France). J. Hydrol. 33, 157–172.

    Article  CAS  Google Scholar 

  • McMahon P.B. and Böhlke J.K. (1996) Denitrification and mixing in a stream-aquifer system: effects on nitrate loading to surface water. J. Hydrol. 186, 105–128.

    Article  CAS  Google Scholar 

  • Mengis M., Schiff S.L., Harris M., English M.C., Aravena R., Elgood R.J. and MacLean A. (1999) Multiple geochemical and isotopic approaches for monitoring ground water NO3 elimination in a riparian zone. Ground Water 37, 448–475.

    Article  CAS  Google Scholar 

  • Nadelhoffer K.J. and Fry B. (1988) Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Sci. Soc. Amer. J. 52, 1633–1640.

    Article  Google Scholar 

  • Nadelhoffer K.J. and Fry B. (1994) Nitrogen isotope studies in forest ecosystems. In Stable Isotopes in Ecology and Environmental Science, eds. K. Lajtha and R.M. Michener, pp.22–44. Blackwell Scientific Publishers, Oxford.

    Google Scholar 

  • Olleros T. (1983) Kinetic isotope effects of the enzymatic splitting of arginine and nitrate; a contribution to the explanation of the reaction mechanisms. Diss. Tech. Univ. Munchen-Weihenstephan, 158 pp.

    Google Scholar 

  • Ostrom N.E., Knoke K.E., Hedin L.O., Robertson G.P. and Smucker A.J.M. (1998) Temporal trends in nitrogen isotope ratio values of nitrate leaching from an agricultural field. Chem. Geol. 146, 219–227.

    Article  CAS  Google Scholar 

  • Postma D.C., Bolsen H., Kristiansen H. and Larsen F. (1991) Nitrate reduction in an unconfined sandy aquifer-water chemistry, reduction processes, and geochemical modeling. Water Resour. Res. 27, 2027–2045.

    Article  CAS  Google Scholar 

  • Revesz K., Böhlke J.K. and Yoshinari T. (1997) Determination of δ18O and δ15N in nitrate. Anal. Chem. 69, 4375–4380.

    Article  CAS  Google Scholar 

  • Révész K., Böhlke J.K., Smith R.L. and Yoshinari T. (1999a) Stable isotope composition of dissolved O2 undergoing respiration in a ground-water contamination gradient. In Contamination of Hydrologie Systems and Related Ecosystems, Vol. 3, eds. D.W. Morganwalp and H.T. Buxton, pp.323-328. US Geological Survey, Water Resources Investigations Report 99-4018C.

    Google Scholar 

  • Révész K., Böhlke J.K., Smith R.L. and Yoshinari T. (1999b) δ18O measurements of dissolved O2 undergoing respiration in contaminated ground water. Isotope Techniques in Water Resources Development and Management, IAEA-SM-361/P94. IAEA, Vienna, in press.

    Google Scholar 

  • Robertson W.D., Cherry J.A. and Sudicky E.A. (1991) Ground-water contamination from two small septic systems on sand aquifers. Ground Water 29, 82–92.

    Article  CAS  Google Scholar 

  • Robertson W.D. and Cherry J.A. (1992) Hydrogeology of an unconfined sand aquifer and its effect on the behavior of nitrogen from a large-flux septic system. Appl. Hydrogeol. 1, 33–43.

    Article  Google Scholar 

  • Ronen D., Kanfi Y. and Magaritz M. (1983) Sources of nitrate in groundwater of the coastal plain of Israel. Water Res. 17, 1499–1503.

    Article  CAS  Google Scholar 

  • Shearer G. and Kohl D. (1986) N2 fixation in field settings, estimations based on natural 15N abundance. Aust. J. Plant Physiol. 13, 699–757.

    CAS  Google Scholar 

  • Shearer G.B., Kohl D.H., and Chien S.-H. (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci. Soc. Amer. J. 42, 899–902.

    Article  CAS  Google Scholar 

  • Sigman D.M., Altabet M.A., Michener R., McCorkle D.D., Fry B. and Holmes R.M. (1997) Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate; an adaption of the ammonium diffusion method. Mar. Chem. 57, 227–242.

    Article  CAS  Google Scholar 

  • Silva S.R., Kendall C., Wilkison D.H., Ziegler A.C., Chang C.C.Y. and Avanzino R.J. (1999) A new method for collection of nitrate from fresh water and analysis for nitrogen and oxygen isotope ratios. J. Hydrol. in press.

    Google Scholar 

  • Smith R.L., Howes B.L. and Duff J.H. (1991) Denitrification in nitrate-contaminated groundwater: occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta 55, 1815–1822.

    Article  CAS  Google Scholar 

  • Spalding R.F. and Exner M.E. (1991) Nitrate contamination in the contiguous United States. In Nitrate Contamination, eds. I. Bogardi and R.D. Kuzelka, pp. 13–48. Springer, Berlin.

    Chapter  Google Scholar 

  • Spalding R.F. and Fulton J.W. (1988) Groundwater munition residues and nitrate near Grand Island, Nebraska, U.S.A. J. Contam. Hydrol. 2, 139–153.

    Article  CAS  Google Scholar 

  • Spalding R.F., Exner M.E., Martin G.E. and Snow D.D. (1993) Effects of sludge disposal on groundwater nitrate concentration. J. Hydrol. 142, 213–224.

    Article  CAS  Google Scholar 

  • van Dover C.L., Grassle J.F., Fry B., Garritt R.H. and Starczak V.R. (1992) Stable isotope evidence for entry of sewage-derived organic matter into a deep-sea food web. Nature 360, 153–155.

    Article  Google Scholar 

  • van Everdingen R.O. and Krouse H.R. (1985) The isotopic composition of sulphate generated by bacterial and abiological oxidation. Nature 315, 395–396.

    Article  Google Scholar 

  • Voerkelius S. and Schmidt H.-L. (1990) Natural oxygen and nitrogen isotope abundance of compounds involved in denitrification. Mitteilungen der Deut. Bodenkundlichen Gesselschaft 60, 364–366.

    Google Scholar 

  • Vogel J.C., Talma A.S. and Heaton T.H.E. (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J. Hydrol. 50, 191–200.

    Article  CAS  Google Scholar 

  • Wahlen M. and Yoshinari T. (1985) Oxygen isotope ratios in N2O from different environments. Nature 313, 780–782.

    Article  CAS  Google Scholar 

  • Wassenaar L. (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3. Appl. Geochem. 10, 391–405.

    Article  CAS  Google Scholar 

  • Wassenaar L.I. and Koehler G. (1999) A rapid on-line technique for the determination of the δ18O and δ17O of gaseous and dissolved oxygen, in review.

    Google Scholar 

  • Wassenaar L.I., Aravena R., Fritz P. and Barker J.F. (1991) Control on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, Central Ontario, Canada. Chem. Geol. (hot. Geosci. Sect.) 27, 39–57.

    Article  Google Scholar 

  • Wells E.R. and Krothe N.C. (1989) Seasonal fluctuations in δ15N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate. J. Hydrol. 112, 191–201.

    Article  CAS  Google Scholar 

  • Willhelm S.R., Schiff S.L. and Robertson W.D. (1996) Biochemical evolution of domestic waste water in septic systems: 2. Application of conceptual model in sandy aquifers. Ground Water 34, 853–864.

    Article  Google Scholar 

  • Wilson G.B., Andrews J.N. and Bath A.H. (1990) Dissolved gas evidence for denitrification in the Lincolnshire limestone groundwaters, Eastern England. J. Hydrol. 113, 51–60.

    Article  CAS  Google Scholar 

  • Wilson G.B., Andrews J.N. and Bath A.H. (1994) The nitrogen isotope composition of groundwater nitrates from the East Midlands Triassic Sandstone aquifer, England. J. Hydrol. 157, 35–46.

    Article  CAS  Google Scholar 

  • Wolterink T.J., Williamson H.J., Jones D.C., Grimshaw T.W. and Holland W.F. (1979) Identifying sources of subsurface nitrate pollution with stable nitrogen isotopes. US Environmental Protection Agency, EPA-600/4-79-050, 150 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kendall, C., Aravena, R. (2000). Nitrate Isotopes in Groundwater Systems. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics