Skip to main content

Abstract

Uranium-238 (238U) is a natural radioactive element that is present in all rocks and soils in various concentrations. Decay of 238U through a series of shorter-lived radionuclides eventually produces radium-226 (226Ra), which has a half-life of 1620 years. Radium-226 decays by alpha-particle emission directly to radon-222 (222Rn), which is short-lived (half-life = 3.82 days). Two other isotopes of radon are formed in natural decay chains, one from thorium-232 and one from uranium-235: radon-220 (220Rn) with a half-life of 56 seconds and radon-219 (219Rn) with a half-life of 4 seconds, respectively. Radon-222 has a long enough half-life to make it useful in geohydrologic studies, whereas the half-lives of 220Rn and 219Rn are too short to make them useful as tracers in environmental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews J.N. (1982) Radiochemical analyses of DST water and core interstitial fluids from the Winterborne Kingston borehole. Institute of Geological Sciences, Report 81-3, 161pp.

    Google Scholar 

  • Andrews J.N. and Wood D.F. (1972) Mechanism of radon release in rock matrices and entry into groundwaters. Inst. Min. Metall. Trans. B81, 198–209.

    CAS  Google Scholar 

  • Andrews J.N., Ford D.J., Hussain N., Trivedi D. and Youngman M.J. (1989) Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim. Cosmochim. Acta 53, 1791–1802.

    Article  CAS  Google Scholar 

  • Bertin C. and Bourg A.C.M. (1994) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environ. Sci. Technol. 28, 794–798.

    Article  CAS  Google Scholar 

  • Cecil L.D., Senior L.A. and Vogel K.L. (1991) Radium-226, radium-228, and radon-222 in groundwater of the Chickies Quartzite, Southeastern Pennsylvania. In Field Studies of Radon in Rocks, Soils, and Water, eds. L.C.S. Gundersen and R.B. Wanty, pp.267–277. C.K. Smoley, Boca Raton, Florida.

    Google Scholar 

  • Cecil L.D. and Gessell T.F. (1992) Sampling and analysis for radon-222 dissolved in groundwater and surface water. Environ. Monit. Assess. 20, 55–66.

    Article  CAS  Google Scholar 

  • Chen C. and Wilson J.L. (1987) Radon production in pumping wells. In Radon, Radium, and Other Radioactivity in Ground Water, ed. B. Graves, pp.423–436. Lewis, Chelsea, Mich.

    Google Scholar 

  • Davis N.M., Hon R. and Dillon P. (1987) Determination of bulk radon emanation rates by high resolution gamma-ray spectroscopy. In Radon, Radium, and Other Radioactivity in Ground Water, ed. B. Graves, pp.11–127. Lewis, Chelsea, Mich.

    Google Scholar 

  • Durrance E.M. (1986) Radioactivity in Geology. Ellis Horwood Limited, Chichester, 441 pp.

    Google Scholar 

  • Fleischer R.L. (1982) Alpha recoil damage and solution effects in minerals: uranium isotopic disequilibrium and radon release. Geochim. Cosmochim. Acta 46, 2191–2201.

    Article  CAS  Google Scholar 

  • Fleischer R.L. (1983) Theory of alpha recoil effects on radon release and isotopic disequilibrium. Geochim. Cosmochim. Acta 47, 779–784.

    Article  CAS  Google Scholar 

  • Flügge S. and Zimens K.E. (1939) Die bestimmung von korngrössen und von diffusionskonstanten aus dem emaniervermögen. Z. Phys. Chem. B 342, 179–200.

    Google Scholar 

  • Folger P.F., Poeter E., Wanty R.B., Frishman D. and Day W. (1996) Controls on radon-222 variations in a fractured crystalline rock aquifer evaluated using aquifer tests and geophysical logging. Ground Water 34(2), 250–261.

    Article  CAS  Google Scholar 

  • Genereux D.P. and Hemond H.F. (1990) Naturally occurring radon-222 as a tracer for streamflow generation: steady state methodology and field example. Water Resour. Res. 26(12), 3065–3075.

    Google Scholar 

  • Hahn O. and Müller H.O. (1923) Eine neue methode zum Studium der Oberfläche und Oberflächenänderung Feinverteilter Niederschläge. Z. Elektrochem. 29, 189–192.

    CAS  Google Scholar 

  • Hall F.R., Boudette E.L. and Olszewski W.K., Jr. (1987) Geologic controls and radon occurrence in New England. In Radon, Radium, and Other Radioactivity in Ground Water, ed. B. Graves, pp.15–30. Lewis, Chelsea, Mich.

    Google Scholar 

  • Hoehn E. and Von Gunten H.R. (1989) Radon in groundwater: a tool to assess infiltration from surface waters to aquifers. Water Resour. Res. 25(8), 1795–1803.

    Article  CAS  Google Scholar 

  • Hoehn E., von Gunten H.R., Stauffer F. and Dracos T. (1992) Radon-222 as a groundwater tracer: a laboratory study. Environ. Sci. Technol. 26, 734–738.

    Article  CAS  Google Scholar 

  • Hunkeler D., Hoehn E., Höhener P. and Zeyer J. (1997) 222Rn as a partitioning tracer to detect diesel fuel contamination in aquifers: laboratory study and field observations. Environ. Sci. Technol. 31, 3180–3187.

    Article  CAS  Google Scholar 

  • Kapustin O.A. and Zaborenko K.B. (1974a) Calculation of degree of liberation of radioactive gases from solids and determination of the diffusion coefficients. Sov. Radiochem. 16, 601–606.

    Google Scholar 

  • Kapustin O.A. and Zaborenko K.B. (1974b) Calculation of degree of liberation of radioactive gases from cylindrical solids and determination of diffusion coefficients. Sov. Radiochem. 16, 607–613.

    Google Scholar 

  • Key R.M., Guinasso M.L. and Schink D.R. (1979) Emanation of 222Rn from marine sediments. Mar. Chem. 7, 221–250.

    Article  CAS  Google Scholar 

  • King P.T., Michel J. and Moore W.S. (1982) Groundwater geochemistry of 228Ra, 226Ra, 222Rn. Geochim. Cosmochim. Acta 46, 1173–1182.

    Article  CAS  Google Scholar 

  • Kozinski J., Szabo Z., Zapecza O.S. and Barringer T.H. (1995) Natural radioactivity in, and inorganic chemistry of, groundwater in the Kirkwood-Cohansey aquifer system, southern New Jersey, 1983-1989. U.S. Geological Survey, Water Resources Investigations Report 92-4144.

    Google Scholar 

  • Krishnaswami S., Graustein W.C., Turekian K.K. and Dowd J.F. (1982) Radium, thorium and radioactive lead isotopes in groundwater: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resour. Res. 18(6), 1633–1675.

    Article  Google Scholar 

  • Krishnaswami S. and Scidemann D.E. (1988) Comparative study of Rn-222, Ar-40, and Ar-37 leakage from rocks and minerals: implications for the role of nanopores in gas transport through natural silicates. Geochim. Cosmochim. Acta 52(3), 655–658.

    Article  CAS  Google Scholar 

  • Lawrence E., Poeter E. and Wanty R. (1991) Geohydrologic, geochemical, and geologic controls on the occurrence of radon in groundwater near Conifer, Colorado, USA. J. Hydrol. 127, 367–386.

    Article  CAS  Google Scholar 

  • Lee R.W. and Hollyday E.F. (1991) Use of radon measurements in Carters Creek, Maury County, Tennessee, to determine location and magnitude of groundwater seepage. In Field Studies of Radon in Rocks, Soils, and Water, eds. L.C.S. Gundersen and R.B. Wanty, pp.237–242. C.K. Smoley, Boca Raton, Florida.

    Google Scholar 

  • LeGrand H.E. (1987) Radon and radium emanations from fractured crystalline rocks—a conceptual hydrogeological model. Ground Water 25(1), 59–69.

    Article  CAS  Google Scholar 

  • Lico M.S. and Rowe T.G. (1991) Radon in groundwater of Carson Valley, West-Central Nevada. In Field Studies of Radon in Rocks, Soils, and Water, eds. L.C.S. Gundersen and R.B. Wanty, pp.279–288. C.K. Smoley, Boca Raton, Florida.

    Google Scholar 

  • Mathieu G.G., Biscaye P.E., Lupton R.A. and Hammond D.E. (1988) System for measurement of 222Rn at low levels in natural waters. Health Phys. 5, 989–992.

    Google Scholar 

  • Prichard H.M. and Gesell T.F. (1977) Rapid measurements of Rn-222 concentrations in water with a commercial liquid scintillation counter. Health Phys. 33, 577–581.

    Article  CAS  Google Scholar 

  • Prichard H.M., Venso E.A. and Dodson C.L. (1992) Liquid scintillation analysis of 222Rn in water by alpha/beta discrimination. Radioact. Radiochem. 3, 28–36.

    CAS  Google Scholar 

  • Quet C., Rousseau-Violet J. and Bussière P. (1975) Recoil emanating power and specific surface area of solids labelled by radium recoil atoms. I. Theory for single solid particles. Radiochem. Radioanal. Lett. 23, 359–368.

    CAS  Google Scholar 

  • Rama and Moore W.S. (1984) Mechanism of transport of U-Th series radioisotopes from solids into groundwater. Geochim. Cosmochim. Acta 48, 395–399.

    Article  CAS  Google Scholar 

  • Reimer G.M. (1977) Fixed-volume inlet system for an alpha-sensitive cell adapted for radon measurement. U.S. Geological Survey Open-File Report, 77-409, 3 pp.

    Google Scholar 

  • Rogers A.S. (1958) Physical behavior and geologic control of radon in mountain streams. U.S. Geological Survey Bulletin 1052-E, pp. 187-211.

    Google Scholar 

  • Semkow T.M. (1990) Recoil-emanation theory applied to radon release from mineral grains. Geochim. Cosmochim. Acta 54, 425–440.

    Article  CAS  Google Scholar 

  • Spruill T.B., Williams J.B., Galeone D.R. and Harned D.A. (1997) Radon in groundwater in Guilford County, North Carolina. U.S. Geological Survey Fact Sheet FS-147-97,4 pp.

    Google Scholar 

  • Szabo Z. and Zapecza O.S. (1991) Geologic and geochemical factors controlling uranium, radium-226, and radon-222 in groundwater, Newark Basin, New Jersey. In Field Studies of Radon in Rocks, Soils, and Water, eds. L.C.S. Gundersen and R.B. Wanty, pp.243–265. C.K. Smoley, Boca Raton, Florida.

    Google Scholar 

  • Szabo Z., Rice D.E., MacLeod C.L. and Barringer T.H. (1996) Relation of distribution of radium, nitrate, and pesticides to agricultural land use and depth, Kirkwood-Cohansey aquifer system, New Jersey Coastal Plain. U.S. Geological Survey, Water Resources Investigations Report 96-4165A, 137 pp.

    Google Scholar 

  • Tanner A.B. (1964) Physical and chemical controls on the distribution of radium-226 and radon-222 in groundwater near Great Salt Lake, Utah. In The Natural Radiation Environment, eds. J.A.S. Actams and W.M. Lowder, pp.256–276. University of Chicago Press, Chicago, 111.

    Google Scholar 

  • Tanner A.B. (1980) Radon migration in the ground: a supplementary review. In The Natural Radiation Environment III, eds. T.F. Gessel and M.W. Lowder, Proc. Symp. Houston, 1978, Rep., CONF-780422, United States Department of Energy, Washington, DC, pp.5–56.

    Google Scholar 

  • Torgersen T. (1980) Controls on pore-fluid concentrations of 4He and 222Rn and the calculation of 4He/222Rn ages. J. Geochem. Expl. 13, 57–75.

    Article  CAS  Google Scholar 

  • Torgersen T., Benoit J. and Mackie D. (1992) Lithological control of groundwater 222Rn concentrations in fractured rock media. In Isotopes of Noble Gases as Tracers in Environmental Studies, pp.263–287. IAEA, Vienna.

    Google Scholar 

  • Wahl A.C. and Bonner N.A. (1951) Radioactivity Applied to Chemistry, J. Wiley & Sons, pp. 284-319.

    Google Scholar 

  • Wanninkof R., Mulholland P.J. and Elwood J.W. (1990) Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour. Res. 26(7), 1621–1630.

    Google Scholar 

  • Wanty R.B., Lawrence E.P. and Gundersen L.C.S. (1991) A theoretical model for the flux of radon-222 from rock to groundwater. In Geologic Controls on Radon, eds. A.E. Gates and L.C.S. Gunderson, pp.73-78. Geological Society of America Special Paper 271.

    Google Scholar 

  • Weigel F. (1978) Radon. Chemiker-Zeitung 102, 287–299.

    CAS  Google Scholar 

  • Yang I.C. (1987) Sampling and analysis of dissolved radon-222 in surface and groundwater, In Radon, Radium, and Other Radioactivity in Ground Water, ed. B. Graves, pp.193–203. Lewis, Chelsea, Mich.

    Google Scholar 

  • Zimen K.E. and Mertens P. (1971) Kernrückstoss. In festen Stoffen und knock-out-effekt. Z. Naturforsch. A. 26, 773–775.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cecil, L.D., Green, J.R. (2000). Radon-222. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics