Skip to main content

Abstract

Chlorofluorocarbons (CFCs) are stable, synthetic, halogenated alkanes, developed in the early 1930s as safe alternatives to ammonia and sulphur dioxide in refrigeration. Production of CFC-12 (dichlorodifluoromethane, CF2C12) began in 1931 followed by CFC-11 (trichlorofluoromethane, CFC13) in 1936. Many other CFC compounds have since been produced, most notably CFC-113 (trichlorotrifluoroethane, C2F3C13). CFCs are nonflammable, noncorrosive, nonexplosive, very low in toxicity, and have physical properties conducive to a wide range of industrial and refrigerant applications. Primary uses of CFC-11 and CFC-12 include coolants in airconditioning and refrigeration, blowing agents in foams, insulation, and packing materials, propellants in aerosol cans, and as solvents. CFC-113 has been used primarily by the electronics industry in manufacture of semiconductor chips, in vapour degreasing and cold immersion cleaning of microelectronic components, and as a solvent in surface cleaning procedures (Jackson et al., 1992). Release of CFCs to the atmosphere and subsequent incorporation into the Earth’s hydrologie cycle has closely followed production. For example, it has been estimated that CFC-11 and CFC-12 produced for aerosol propellants were released, on average, within 6 months of sale (Gamlen et al., 1986), and emissions of CFCs used as blowing agents in open-cell foams and extruded foams took place within less than 1 year (Midgley and Fisher, 1993). CFCs used in refrigeration and airconditioning have somewhat greater storage times, being released on average within 1 to 10 years, and CFCs used as blowing agents in closed-cell thermoset foams are released after more than 10 years (Midgley and Fisher, 1993). Current estimates of the atmospheric lifetimes of CFC-11, CFC-12, and CFC-113 are 45 ± 7, 87 ± 17, and 100 ± 32 years (Volk et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AFEAS (1997) Production, sales and atmospheric release of fluorocarbons through 1995. Alternative Fluorocarbons Environmental Acceptability Study Program Office, The West Tower — Suite 400, 1333 H Street NW, Washington, DC 20005, USA.

    Google Scholar 

  • Bauer M.R. and Yavitt J.B. (1996) Processes and mechanisms controlling consumption of CFC-11 and CFC-12 by peat from a conifer-swamp and black spruce-tamarack bog in New York State. Chemosphere 32(4), 759–768.

    Article  CAS  Google Scholar 

  • Böhlke J.K. and Denver J.M. (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour. Res. 31(9), 2319–2339.

    Article  Google Scholar 

  • Böhlke J.K., Revesz K., Busenberg E., Deak J., Deseo E. and Stute M. (1997) Groundwater record of halocarbon transport by the Danube River. Environ. Sci. Technoi 31(11), 3293–3299.

    Article  Google Scholar 

  • Bönisch G., Blindheim J., Bullister J.L., Schlosser P. and Wallace D.W.R. (1997) Long-term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea. J. Geophys. Res. — Oceans 102(C8), 18553–18571.

    Article  Google Scholar 

  • Brown J.D. (1980) Evolution of Fluorocarbon Compounds as Ground Water Tracers-Soil Column Studies. M.S. Thesis. Department of Hydrology Water Resources, University Arizona, Tuscon, 97 pp.

    Google Scholar 

  • Bu X. and Warner M.J. (1995) Solubility of chlorofluorocarbon 113 in water and seawater. Deep-Sea Res. 42(7), 1151–1161.

    Article  CAS  Google Scholar 

  • Bullister J.L. (1984) Atmospheric chlorofluomethanes as tracers of ocean circulation and mixing: Studies in the Greenland and Norwegian seas. Unpubl. PhD thesis, University of Califorina, San Diego, La Jolla, 172 pp.

    Google Scholar 

  • Bullister J.L. (1989) Chlorofluorocarbons as time-dependent tracers in the ocean. Oceanography 2, 12–17.

    Google Scholar 

  • Bullister J.L. and Lee B.S. (1995) Chlorofluorocarbon-11 removal in anoxic marine waters. Geophys. Res. Lett. 22(14), 1893–1896.

    Article  CAS  Google Scholar 

  • Bullister J.L. and Weiss R.F. (1988) Determination of CC13F and CC1F2 in seawater and air. Deep-Sea Res. 35(5), 839–854.

    Article  CAS  Google Scholar 

  • Busenberg E. and Plummer L.N. (1991) Chlorofluorocarbons (CCI3F and CCI2F2): use as an age dating tool and hydrologic tracer in shallow ground-water systems. In Proceedings, US Geological Survey Toxic Substances Hydrology Program, Technical Meeting. Monterey, California, March 11-15, 1991, eds. G.L. Mallard and D.A. Aronson, pp. 542–547. U.S. Geological Survey Water Resources Investigations Report 91-4034.

    Google Scholar 

  • Busenberg E. and Plummer L.N. (1992) Use of chlorofluorocarbons (CC13F and CC12F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of Central Oklahoma. Water Resour. Res. 28(9), 2257–2283.

    Article  CAS  Google Scholar 

  • Busenberg E. and Plummer L.N. (1993) Use of trichlorofluorocarbon-113 (CFC-113) as a hydrologie tracer and age-dating tool for young groundwater. Geological Society of America, 1993 Annual Meeting, Abstracts with Programs, 25(6), A–365.

    Google Scholar 

  • Busenberg E. and Plummer L.N. (1997) Use of sulfur hexafluoride as a dating tool and as a tracer of igneous and volcanic fluids in ground water. Geological Society of America, 1997 Annual Meeting, Abstracts with Programs 29(6), A–78.

    Google Scholar 

  • Busenberg E., Weeks E.P., Plummer L.N. and Bartholemay R.C. (1993) Age dating ground water by use of chlorofluorocarbons (CC13F and CCI2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho. U.S. Geological Survey, Water Resources Investigations Report 93-4054, 47 pp.

    Google Scholar 

  • Butler J.H. (ed.), Elkins J.W., Montzka S.A., Thompson T.M., Swanson T.H., Clarke A.D., Moore F.L., Hurst D.F., Romashkin P.A., Yvon-Lewis S.A., Lobert J.M., Dicorleto M., Dutton G.S., Lock L.T., King D.B., Dunn R.E., Ray E.A., Pender M., Wamsley P.R. and Volk C.M. (1998) Nitrous oxide and halocompounds. Chapter 5. In Climate Monitoring and Diagnostics Laboratory Summary Report No. 24, 1996-19981, eds. D.J. Hofmann, J.T. Peterson and R.M. Rossan. p. 91-121. US Department of Commerce, NOAA Environmental Research Laboratories.

    Google Scholar 

  • Ciccioli P., Cooper W.T., Hammer P.M. and Hayes J.M. (1980) Organic solute-mineral surface interactions: A new method for the determination of groundwater velocities. Water Resour. Res. 16(1), 217–223.

    Article  CAS  Google Scholar 

  • Clark J.F., Smethie W.M., Jr. and Simpson HJ. (1995a) Chlorofluorocarbons in the Hudson estuary during summer months. Water Resour. Res. 31(10), 2553–2560.

    Article  CAS  Google Scholar 

  • Clark J.F., Simpson H.J., Bopp R.F. and Deck B.L. (1995b) Dissolved oxygen in lower Hudson Estuary: 1978-93. J. Environ. Engineer. 121, 760–763.

    Article  CAS  Google Scholar 

  • Cook P.G. and Solomon D.K. (1995) The transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and Krypton-85. Water Resour. Res. 31(2), 263–270.

    Article  CAS  Google Scholar 

  • Cook P.G. and Solomon D.K. (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J. Hydrol. 191, 245–265.

    Article  CAS  Google Scholar 

  • Cook P.G., Solomon D.K., Plummer L.N., Busenberg E. and Schiff S.L. (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res. 31(3), 425–434.

    Article  CAS  Google Scholar 

  • Cook P.G., Solomon D.K., Sanford W.E., Busenberg E., Plummer L.N. and Poreda R.J. (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour. Res. 32(6), 1501–1509.

    Article  CAS  Google Scholar 

  • Cooper W.T. (1981) Interactions Between Organic Solutes and Mineral Surfaces and their Significance in Hydrogeology. Unpubl. PhD thesis, Indiana University, Bloomington, Indiana, 234pp.

    Google Scholar 

  • Cunnold D.M., Weiss R.F., Prinn R.G., Hartley D., Simmonds P.G., Fraser P.J., Miller B., Alyea F.N. and Porter L. (1997) GAGE/AGAGE measurements indicating reductions in global emissions of CC13F and CC12F2 in 1992-1994. J. Geophys. Res. — Atmos. 102(D1), 1259–1269.

    Article  CAS  Google Scholar 

  • Deipser A. and Stegmann R. (1997) Biological degradation of VCCs and CFCs under simulated anaerobic landfill conditions in laboratory test digesters. Environ. Sci. Pollut. Res. Int. 4(4), 209–216.

    Article  CAS  Google Scholar 

  • Denovan D.A. and Strand S.E. (1992) Biodegradation of chlorofluorocarbons in anaerobic environments. Chemosphere 24, 935–940.

    Article  CAS  Google Scholar 

  • Dunkle S.A., Plummer L.N., Busenberg E., Phillips P.J., Denver J.M., Hamilton P.A., Michel R.L. and Coplen T.B. (1993) Chlorofluorocarbons (CC13F and CC12F2) as dating tools and hydrologic tracers in shallow ground water of the Delmarva Peninsula, Atlantic coastal plain, United States. Water Resour. Res. 29(12), 3837–3860.

    Article  CAS  Google Scholar 

  • Ekwurzel B., Schlosser P., Smethie W.M., Jr., Plummer L.N., Busenberg E., Michel R.L., Weppernig, R. and Stute M. (1994) Dating of shallow groundwater: Comparison of the transient tracers 3H/ 3He, chlorofluorocarbons and 85Kr. Water Resour. Res. 30(6), 1693–1708.

    Article  Google Scholar 

  • Elkins J.W., Thompson T.M., Swanson T.H., Butler J.H., Hall B.D., Cummings S.O., Fisher D.A. and Raffo A.G. (1993) Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature 364, 780–783.

    Article  CAS  Google Scholar 

  • Elkins J.W., Butler J.H., Thompson T.M., Montzka S.A., Myers R.C., Lobert J.M., Yvon S.A., Wamsley P.R., Moore F.L., Gilligan J.M., Hurst D.F., Clarke A.D., Swanson T.H., Volk C.M., Lock L.T., Geller L.S., Dutton G.S., Dunn R.M., Dicorleto M.F., Baring T.J. and Hayden A.H. (1996) Nitrous oxide and halocompounds. In Climate Monitoring and Diagnositcs Laboratory No. 23, Summary Report 1994-1995. eds. DJ. Hofmann, J.T. Peterson and R.M. Rosson, U.S. Department of Commerce, NOAA Environmental Research Laboratories, pp. 84-111.

    Google Scholar 

  • Epier N.A. (1990) Chlorofluoromethanes as tracers of recent ground water on Long Island, New York. NWWA Annual Meeting, Anaheim, C.A, Sept. 25-26, 1990, p.8.

    Google Scholar 

  • Fisher D.A. and Midgley P.M. (1993) Production and release to the atmosphere of CFCs 113, 114 and 115. Atmos. Environ. 27A, 271–276.

    CAS  Google Scholar 

  • Fraser P., Cunold D., Alyea F., Weiss R., Prinn R., Simmonds P., Miller B. and Langenfelds R. (1996) Lifetime and emission estimates of 1, 1, 2-trichlorotrifluorethane (CFC-113) from daily global background observations June 1982-June 1994. J. Geophys. Res.—Atmos. 101(D7), 12585–12599.

    Article  CAS  Google Scholar 

  • Gamlen P.H., Lane B.C., Midgley P.M. and Steed J.M. (1986) The production and release to the atmosphere of CCI3F and CC12F2 (chlorofluorocarbons CFC 1 1 and CFC 12). Atmos. Environ. 20, 1077–1085.

    Article  CAS  Google Scholar 

  • Gee G.W. and Hillel D. (1988) Ground-water recharge in arid regions: Review and critique of estimation methods. Hydrol. Proc. 2, 255–266.

    Article  Google Scholar 

  • Geller L.S., Elkins J.W., Lobert J.M., Clarke A.D., Hurst D.F., Butler J.H. and Myers R.C. (1997) Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett. 44(6), 675–678.

    Article  Google Scholar 

  • Hayes J.M. and Thompson G.M. (1977) Trichlorofluoromethane in groundwater — a possible indicator of groundwater age. Water Resources Research Center, Technical Report 90, Purdue University, NTIS Report PB 265 170, 25 pp.

    Google Scholar 

  • Ho D.T., Schlosser P., Smethie W.M., Jr. and Simpson H.J. (1998) Variability in atmospheric chlorofluorocarbons (CCI3F and CCl2F2) near a large urban area: Implications for groundwater dating. Environ. Sci. Technol. 32(16). 2377–2382.

    Article  CAS  Google Scholar 

  • Hofer M. and Imboden D.M. (1998) Simultaneous determination of CFC-11, CFC-12, N2 and Ar in water. Anal. Chem. 70, 724–729.

    Article  CAS  Google Scholar 

  • Hurst D.F., Bakwin P.S., Myers R.C. and Elkins J.W. (1997) Behavior of trace gas mixing ratios on a very tall tower in North Carolina. J. Geophys. Res. — Atmos. 102(D7), 8825–8835.

    Article  CAS  Google Scholar 

  • Jackson R.E., Lesage S. and Priddle M.W. (1992) Estimating the fate and mobility of CFC-113 in groundwater: Results from the Gloucester landfill project. In Groundwater Contamination and Analysis at Hazardous Waste Sites, eds. S. Lesage and R.E. Jackson, pp. 511–526, Marcel Dekker, New York, N.Y.

    Google Scholar 

  • Jean-Baptiste P., Messias M.J., Alba C., Charlou J.L. and Bougault H. (1994) A simple copper-tube sampler for collecting and storing seawater for post-cruise CFC measurements. Deep-Sea Res. 41(9), 1361–1372.

    Article  Google Scholar 

  • Johnston C.T., Cook P.G., Frape S.K., Plummer L.N., Busenberg E. and Blackport R.J. (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36(1), 171–180.

    Article  CAS  Google Scholar 

  • Kanakidou M., Dentener FJ. and Crutzen P.J. (1995) A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere. J. Geophys. Res. — Atmos. 100(D9), 18781–18801.

    Article  Google Scholar 

  • Katz B.G., Lee T.M., Plummer L.N. and Busenberg E. (1995) Chemical evolution of groundwater near a sinkhole lake, northern Florida. 1. Flow patterns, age of groundwater, and influence of lakewater leakage. Water Resour. Res. 31(6), 1549–1564.

    Article  CAS  Google Scholar 

  • Ko M.W., Sze N.D., Wang W.-C, Shia G., Goldman A., Murcray F.J., Murcray D.G. and Rindland C.P. (1993) Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming. J. Geophys. Res.—Atmos. 98(D6), 10499–10507.

    Article  Google Scholar 

  • Law C.S., Watson A.J. and Liddicoat M.I. (1994) Automated vacuum analysis of sulfur hexafluoride in seawater: derivation of the atmospheric trend (1979-1993) and potential as a transient tracer. Mar. Chem. 48, 57–69.

    Article  CAS  Google Scholar 

  • Lesage S., Jackson R.E., Priddle M.W. and Riemann P.G. (1990) Occurrence and fate of organic solvent residues in anoxic groundwater at the Gloucester Landfill, Canada. Environ. Sci. Technol. 24, 559–566.

    Article  CAS  Google Scholar 

  • Levin I. and Hesshaimer V. (1996) Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6). J. Geophys. Res. — Atmos. 101(D11), 16745–16755.

    Article  CAS  Google Scholar 

  • List R.J. (1949) Smithsonian Meteorological Tables. Sixth ed., Smithsonian Institution Press, Washington, DC, 527 pp.

    Google Scholar 

  • Lobert J.M., Butler J.H., Baring T.J., Montzka S.M., Myers R.C. and Elkins J.W. (1995) OAXTC 92: Ocean/Atmosphere Exchange of Trace Compounds 1992: Oceanic measurements of HCFC-22, CFC-11, CFC-12, CFC-113, CH3CCl3, CCl4, and N2O in the marine air and surface waters of the west Pacific Ocean (August 3-October 21, 1992). NOAA Technical Memorandum, ERL CMDL-9, 43pp.

    Google Scholar 

  • Lovelock J.E. (1971) Atmospheric fluorine compounds as indicators of air movements. Nature 230, 379.

    Article  CAS  Google Scholar 

  • Lovley D.R. and Woodward J.C. (1992) Consumption of Freon CFC-11 and CFC-12 by anaerobic sediments and soils. Environ. Sci. Technol. 26, 925–929.

    Article  CAS  Google Scholar 

  • Maiss M., Steele L.P., Francey R.J., Fraser P.J., Langenfelds R.L., Trivett N.B.A. and Levin I. (1996) Sulfur hexafluoride — A powerful new atmospheric tracer. Atmos. Environ. 30(10–11), 1621–1629.

    Article  CAS  Google Scholar 

  • Massmann J. and Farrier D.F. (1992) Effects of atmospheric pressures on gas transport in the vadose zone. Water Resour. Res. 28(3), 777–791.

    Article  Google Scholar 

  • McCarthy R.L., Bower F.A. and Jesson J.P. (1977) The fluorocarbon-ozone theory-1. Production and release — World production and release of CC13F and CCl2F2 (Fluorocarbons 11 and 12) through 1975. Atmos. Environ. 11, 491–497.

    Article  CAS  Google Scholar 

  • McCulloch A., Midgley P.M. and Fisher D.A. (1994) Distribution of emissions of chlorofluorocarbons (CFCs) 11, 12, 113, 114, and 115 among reporting and nonreporting countries in 1986. Atmos. Environ. 28, 2567–2582.

    Article  CAS  Google Scholar 

  • Midgley P.M. and Fisher D.A. (1993) Production and release to the atmosphere of chlorodifluoromethane (HCFC-22). Atmos. Environ. 27A, 2215–2223.

    CAS  Google Scholar 

  • Mohn W.W. and Tiedje J.M. (1992) Microbial reductive dehalogenation. Microbiology Review 56, 482–507.

    CAS  Google Scholar 

  • Montzka S.A., Myers R.C., Butler J.H., Elkins J.W., Lock L.T., Clarke A.D. and Goldstein A.H. (1996) Observations of HFC-134a in the remote troposphere. Geophys. Res. Lett. 23(2), 169–172.

    Article  CAS  Google Scholar 

  • Morris R.A., Miller T.M., Viggiano A.A., Paulson F.J., Solomon S. and Reid G. (1995) Effects of electron and ion reactions on atmospheric lifetimes of fully fluorinated compounds. J. Geophys. Res. — Atmos. 100(D1), 1287–1294.

    Article  CAS  Google Scholar 

  • Mroczek E.K. (1997) Henry’s law constants and distribution coefficients of sulfur hexafluoride in water from 25 °C to 230 °C. J. Chem. Eng. Data 42(1), 116–119.

    Article  CAS  Google Scholar 

  • Nilson R.H., Peterson E.W., Lie K.H., Burkhard N.R. and Hearst J.R. (1991) Atmospheric pumping: A mechanism causing vertical transport of contaminated gases through fractured permeable media. J. Geophys. Res. — Solid Earth 96(B13), 21933–21948.

    Article  Google Scholar 

  • Oram D.E., Sturges W.T., Penkett S.A., McCulloch A. and Fraser P.J. (1998) Growth of fluoroform (CHF3, HFC-23) in the background atmosphere. Geophys. Res. Lett. 25(1), 35–38.

    Article  CAS  Google Scholar 

  • Oremland R.S., Lonergan D.J., Culbertson C.W. and Lovley D.R. (1996) Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHC12CF3) in soils and sediments. Appl. Environ. Microbiol. 62(5), 1818–1821.

    CAS  Google Scholar 

  • Oster H., Sonntag C. and Munnich K.O. (1996) Groundwater age dating with chlorofluorocarbons. Water Resour. Res. 32(10), 2989–3001.

    Article  CAS  Google Scholar 

  • Parks W.S., Mirecki J.E. and Kingsbury J.A. (1995) Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee. U.S. Geological Survey, Water Resources Investigation Report 94-4212, 58 pp.

    Google Scholar 

  • Plummer L.N., Busenberg E., McConnell J.B., Drenkard S., Schlosser P. and Michel R.L. (1998a) Flow of river water into a karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia. Appl. Geochem. 13(8), 995–1015.

    Article  CAS  Google Scholar 

  • Plummer L.N., Busenberg E., Drenkard S., Schlosser P., McConnell J.B., Michel R.L., Ekwurzel B. and Weppernig R. (1998b) Flow of river water into a karstic limestone aquifer. 2. Dating the young fraction in groundwater mixtures in the Upper Floridan aquifer near Valdosta, Georgia. Appl. Geochem. 13(8), 1017–1043.

    Article  CAS  Google Scholar 

  • Plummer L.N., Busenberg E., Sanford W.E., Bexfield L.M. and Anderholm S.K. (1997) Tracing and dating young ground water in the Middle Rio Grande Basin, Albuquerque, New Mexico. Geological Society of America, 1997 Annual Meeting, Abstracts with Programs 29(6), A135–A136.

    Google Scholar 

  • Plummer L.N., Michel R.L., Thurman E.M. and Glynn P.D. (1993) Environmental tracers for age-dating young ground water. In Regional Ground-Water Quality, ed. W.M. Alley, pp. 255–294. Van Nostrand Reinhold, New York, N.Y.

    Google Scholar 

  • Portniaguine O. and Solomon D.K. (1998) Parameter estimation using groundwater age and head data, Cape Cod, Massachusetts. Water Resour. Res. 34(4), 637–645.

    Article  CAS  Google Scholar 

  • Prather M.J. (1995) Atmospheric lifetimes of HCFCs and HFCs: Current estimates and uncertainties. Proceedings, NASA/NOAA/AFEAS Workshop on the Atmospheric Degradation of HCFCs and HFCs, November 17-19, 1993, Boulder, Colorado, pp. 1.1-1.19.

    Google Scholar 

  • Prinn R.G., Weiss R.F., Miller B.R., Huang J., Alyea F.N., Cunnold D.M., Fraser P.J., Hartley D.E. and Simmonds P.G. (1995) Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 269, 187–192.

    Article  CAS  Google Scholar 

  • Randall J.H. and Schultz T.R. (1976) Chlorofluorocarbons as hydrologic tracers: A new technology. Hydrology Water Resources Arizona Southwest 6, 189–195.

    Google Scholar 

  • Randall J.H., Schultz T.R. and Davis S.N. (1977) Suitability of fluorocarbons as tracers in ground water resources evaluation. Technical report to Office of Water Research and Technology, U.S. Department of the Interior, NTIS PB 277 488, 37 pp.

    Google Scholar 

  • Ravishankara R.A., Solomon S., Turnipseed A.A. and Warren R.F. (1993) Atmospheric lifetimes of long-lived species. Science 259, 194–199.

    Article  CAS  Google Scholar 

  • Reilly T.E., Plummer L.N., Phillips P.J. and Busenberg E. (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour. Res. 30(2), 421–433.

    Article  Google Scholar 

  • Rhein M. (1991) Ventilation rates of the Greenland and Norwegian Seas derived from distributions of the chlorofluoromethanes Fl 1 and F12. Deep-Sea Res. 38, 485–503.

    Article  CAS  Google Scholar 

  • Russell A.D. and Thompson G.M. (1983) Mechanism leading to enrichment of the atmospheric fluorocarbons CCl3F and CCl2F2 in groundwater. Water Resour. Res. 19(1), 57–60.

    Article  CAS  Google Scholar 

  • Schlatter J.W., Wuest A. and Imboden D.M. (1997) Hypolimnetic density currents traced by sulfur hexafluoride (SF6). Aquat. Sci. 59, 225–242.

    Google Scholar 

  • Schlosser P., Stute M., Sonntag C. and Munnich K.O. (1989) Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256.

    Article  CAS  Google Scholar 

  • Schultz T.R. (1979) Trichlorofluoromethane as a ground-water tracer for finite-state models. Unpubl. PhD thesis, University of Arizona.

    Google Scholar 

  • Schultz T.R., Randall J.H., Wilson L.G. and Davis S.N. (1976) Tracing sewage effluent recharge-Tucson, Arizona. Ground Water 14, 463–470.

    Article  CAS  Google Scholar 

  • Semprini L., Hopkins G.D., McCarty P.L. and Roberts P.V. (1992) In-situ transformation of carbontetrachloride and other compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Technol. 26, 2454–2461.

    Article  CAS  Google Scholar 

  • Semprini L., Hopkins G.D., Roberts P.V. and McCarty P.L. (1990) In-situ biotransformation of carbon tetrachloride, 1,1,1,-trichloroethane, Freon-11, and Freon-12 under anoxic conditions. EOS, Trans. Am. Geophys. Union 71, 1324.

    Google Scholar 

  • Severinghaus J.P., Keeling R.F., Miller B.R., Weiss R.F., Deck B. and Broecker W.S. (1997) Feasibility of using sand dunes as archives of old air. J. Geophys. Res. — Atmos. 102(D14), 16783–16792.

    Article  CAS  Google Scholar 

  • Shapiro S.D., Schlosser P., Smethie W.M., Jr. and Stute M. (1997) The use of 3H and tritiogenic 3He to determine CFC degradation and vertical mixing rates in Framvaren Fjord, Norway. Mar. Chem. 59, 141–157.

    Article  CAS  Google Scholar 

  • Shapiro S.D., Rowe G., Schlosser P., Ludin A. and Stute M. (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour. Res. 34(5), 1165–1180.

    Article  CAS  Google Scholar 

  • Smethie W.M. (1993) Tracing the thermohaline circulation in the western North Atlantic using chlorofluorocarbons. Prog.Oceanogr. 31, 51–99.

    Article  Google Scholar 

  • Solomon D.K., Schiff S.L., Poreda R.J. and Clark W.B. (1993) A validation of the 3H/3He method for determining groundwater recharge. Water Resour. Res. 29(9), 2951–2962.

    Article  CAS  Google Scholar 

  • Sonier D.N., Duran N.L. and Smith G.B. (1994) Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds. Appl. Environ. Microbiol. 60, 4567–4572.

    CAS  Google Scholar 

  • Sylvestre M., Bertrand J.L. and Viel G. (1997) Feasibility study for the potential use of biocatalytic systems to destroy chlorofluorocarbons (CFCs). Crit. Rev. Environ. Sci. Technol. 27(2), 87–111.

    CAS  Google Scholar 

  • Szabo Z., Rice D.E., Plummer L.N., Busenberg E., Drenkard S. and Schlosser P. (1996) Age-dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour. Res. 32(4), 1023–1038.

    Article  CAS  Google Scholar 

  • Thompson C.M. (1976) Trichloromethane: A New Hydrologic Tool for Tracing and Dating Groundwater. Unpubl. PhD thesis, Indiana University, Bloomington, Indiana. 93 pp.

    Google Scholar 

  • Thompson G.M. and Hayes J.M. (1979) Trichlorofluoromethane in groundwater: A possible tracer and indicator of groundwater age. Water Resour. Res. 15(3), 546–554.

    Article  CAS  Google Scholar 

  • Thompson G.M., Hayes J.M. and Davis S.N. (1974) Fluorocarbon tracers in hydrology. Geophys. Res. Lett. 1, 177–180.

    Article  Google Scholar 

  • Thompson T.M., Komhyr W.D. and Dutton E.G. (1985) Chlorofluorocarbon-11,-12 and nitrous oxide measurements at the NOAA/GMCC baseline stations (16 September 1973 to 31 December 1979). NOAA Technical Report ERL428-ARL 8, p.124.

    Google Scholar 

  • Thorstenson, D.C., Weeks E.P., Haas H., Busenberg E., Plummer L.N. and Peters C.A. (1998) Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain. Water Resour. Res. 34(6), 1507–1529.

    Article  CAS  Google Scholar 

  • Tominaga T. (1992) Chlorofluorocarbons in the atmosphere: Trends and vertical profiles. Pure Appl. Chem. 64, 529–536.

    Article  CAS  Google Scholar 

  • van Genuchten M.Th. and Alves W.J. (1982) Analytical solutions of the one-dimensional convective-dispersion solute transport equation. US Department Agriculture Technical Bulletin 1661, 151 pp.

    Google Scholar 

  • Volk C.M., Elkins J.W., Fahey D.W., Dutton G.S., Gilligan J.M., Loewenstein M., Podolske J.R., Chan K.R. and Gunson M.R. (1997) Evaluation of source gas lifetimes from stratospheric observations. J. Geophys. Res. — Atmos. 102(D21), 25543–25564.

    Article  CAS  Google Scholar 

  • Wallace D.W.R., Beining P. and Putzka A. (1994) Carbon tetrachloride and chlorofluorocarbons in the South Atlantic Ocean, 19°S. J. Geophys. Res. — Oceans 99(C4), 7803–7819.

    Article  CAS  Google Scholar 

  • Wang J.-L., Chang, C.-J. and Lin, Y.-H. (1998) Concentration distributions of anthropogenic halocarbons over a metropolitan area. Chemosphere 36(10), 2391–2400.

    Article  CAS  Google Scholar 

  • Wanninkhof R., Ledwell J.R. and Watson A.J. (1991) Analysis of sulfur hexafluoride in seawater. J. Geophys. Res. — Oceans 96(CS), 8733–8740.

    Article  Google Scholar 

  • Warner M.J. and Weiss R.F. (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. 32, 1485–1497.

    Article  CAS  Google Scholar 

  • Warner M.J., Bullister J.L., Wisegarver D.P., Gammon R.H. and Weiss R.F. (1996) Basinwide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989. J. Geophys. Res. — Oceans 101(C9), 20525–20542.

    Article  CAS  Google Scholar 

  • Weeks E.P., Earp D.E. and Thompson C.M. (1982) Use of atmospheric fluorocarbons F-11 and F-l2 to determine the diffusion parameters of the unsaturated zone in the southern high plains of Texas. Water Resour. Res. 15, 1365–1378.

    Article  Google Scholar 

  • Weiss R.F. and Price B.A. (1980) Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359.

    Article  CAS  Google Scholar 

  • Wilkowske C.D. and Solomon D.K. (1997) Evaluation of a simple copper tube sampler for dating ground water with chlorofluorocarbons (CFCs). Geological Society of America, 1997 Annual Meeting, Abstracts with Programs, 29(6), A–77.

    Google Scholar 

  • Wilson G.B. and McNeill G.W. (1997) Noble gas recharge temperatures and excess air component. Appl. Geochem. 12, 747–762.

    Article  CAS  Google Scholar 

  • Wilson R.D. and Mackay D.M. (1995) Direct detection of residual nonaqueous phase liquid in the saturated zone using SF6 as a partitioning tracer. Environ. Sci. Technol. 29(5), 1255–1258.

    Article  CAS  Google Scholar 

  • Wisegarver D.P. and Gammon R.H. (1988) A new transient tracer: Measured vertical distribution of CC12FCC1F2 (F-113) in the North Atlantic subarctic gyre. Geophys. Res. Lett. 15, 188–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plummer, L.N., Busenberg, E. (2000). Chlorofluorocarbons. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics