Skip to main content

Determining Timescales for Groundwater Flow and Solute Transport

  • Chapter
Environmental Tracers in Subsurface Hydrology

Abstract

One of the principal uses of environmental tracers is for determining the ages of soil waters and groundwaters. (We may refer to this as ‘hydrochronology’by analogy with the dating of solid materials known as geochronology.) Information on soil water and groundwater age enables timescales for a range of subsurface processes to be determined. For example, ‘groundwater stratigraphy’is used increasingly to decipher past recharge rates and conditions in unconfined aquifers, in much the same way that sedimentary stratigraphy yields information about past depositional environments. The use of environmental tracers to determine water ages allows groundwater recharge rates and flow velocities to be determined independently, and commonly more accurately, than with traditional hydraulic methods where hydraulic properties of aquifers are poorly known or spatially variable. Studies of groundwater residence times in association with groundwater contamination studies can enable historic release rates of contaminants and contaminant transport rates to be determined. Where input rates are known, measurements of groundwater contaminant concentrations, together with groundwater dating, can sometimes be used for estimating chemical reaction rates. The combination of these dating methods with stable isotope measurements has sometimes allowed changes in contaminant sources over time to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adar E.M. and Neuman S.P. (1988) Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data, II. Application to Aravaipa Valley in southern Arizona, U.S.A. J. Hydrol. 97, 279–302.

    Article  CAS  Google Scholar 

  • Allison G.B. and Holmes J.W. (1973) The environmental tritium concentration of underground water and its hydrological interpretation. J. Hydrol. 19, 131–143.

    Article  CAS  Google Scholar 

  • Allison G.B. and Hughes M.W. (1975) The use of environmental tritium to estimate recharge to a South-Australian aquifer. J. Hydrol. 26, 245–254.

    Article  Google Scholar 

  • Andrews J.N. and Lee D.J. (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J. Hydrol. 41, 233–252.

    Article  CAS  Google Scholar 

  • Appel C.A. and Reilly T.E. (1994) Summary of selected computer programs produced by the U.S. Geological Survey for simulation of ground-water flow and quality. U.S. Geological Survey Circular 1104, 98 pp.

    Google Scholar 

  • Appelo C.A.J. and Postma D. (1996) Geochemistry, Groundwater and Pollution. Balkema, Rotterdam, 536 pp.

    Google Scholar 

  • Begemann F. and Libby W.F. (1957) Continental water balance, ground water inventory and storage times, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta 12, 277–296.

    Article  CAS  Google Scholar 

  • Bentley H.W., Phillips F.M., Davis S.N., Habermehl M.A., Airey P.L., Calf G.E., Elmore D., Gove H.E. and Torgersen T. (1986) Chlorine 36 dating of very old groundwater. 1. The Great Artesian Basin, Australia. Water Resour. Res. 22(13), 1991–2001.

    Article  CAS  Google Scholar 

  • Böhlke J.K. and Denver J.M. (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour. Res. 31(9), 2319–2339.

    Article  Google Scholar 

  • Böhlke J.K., Revesz K., Busenberg E., Deak J., Deseo E. and Stute M. (1997) Groundwater record of halocarbon transport by the Danube River. Environ. Sci. Technol. 31(11), 3293–3299.

    Article  Google Scholar 

  • Böttcher J., Strebel O. and Duynisveld W.H.M. (1989) Kinetik und Modellierung gekoppelter Stoffumsetzungen im Grundwasser eines Lockergesteins-Aquifers. Geologisches Jahrbuch 51C, 3–40.

    Google Scholar 

  • Böttcher J., Strebel O., Voerkelius S. and Schmidt H.-L. (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114, 413–424.

    Article  Google Scholar 

  • Burt T.P. and Trudgill S.T. (1993) Nitrate in Groundwater. In Nitrate. Processes, Patterns, and Management, eds. T.P. Burt, A.L. Heathwaite and S.T. Trudgill, pp.213–238. John Wiley and Sons, Chichester.

    Google Scholar 

  • Busenberg E. and Plummer L.N. (1996) Concentrations of chlorofluorocarbons and other gases in ground water at Mirror Lake, New Hampshire. In U.S. Geological Survey Toxic Substances Program. Proceedings of the technical meeting, September 20-24, 1993, Colorado Springs, Colorado, eds. D. W. Morganwalp and D. A. Aronson, pp. 151–158. U.S. Geological Survey, Water Resources Investigations Report 94-4015.

    Google Scholar 

  • Campana M.E. and Simpson E.S. (1984) Groundwater residence times and recharge rates using a discrete-state compartment model and 14C data. J. Hydrol. 72, 171–185.

    Article  Google Scholar 

  • Chappelle F.H., Zelibor J.L., Grimes D.J. and Knobel L.L. (1987) Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater. Water Resour. Res. 23(8), 1625–1632.

    Article  Google Scholar 

  • Cleveland W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assn. 74, 829–836.

    Article  Google Scholar 

  • Cook P.G. and Solomon D.K. (1995) Transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resour. Res. 31(2), 263–270.

    Article  CAS  Google Scholar 

  • Cook P.G., Solomon D.K., Plummer L.N., Busenberg E. and Schiff S.L. (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour. Res. 31(3), 425–434.

    Article  CAS  Google Scholar 

  • Copenhaver S.A., Krishnaswami S., Turekian K.K., Epler N. and Cochran J.K. (1993) Retardation of 238U and 232Th decay chain radionuclides in Long Island and Connecticut aquifers. Geochim. Cosmochim. Acta 57, 597–603.

    Article  CAS  Google Scholar 

  • Coplen T.B. (1993) Uses of environmental isotopes. In Regional Ground-Water Quality, ed. W.M. Alley, pp. 227–253. Van Nostrand Reinhold, New York, N.Y.

    Google Scholar 

  • Davis S.N. and Murphy E. (1987) Dating ground water and the evaluation of repositories for radioactive waste. U.S. Nuclear Regulatory Commission, Report NUREG/CR-4912. U.S. Nuclear Regulatory Commission, Washington, 181 pp.

    Google Scholar 

  • Dincer T., Al-Mugrin A. and Zimmermann U. (1974) Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium. J. Hydrol. 23(1), 79–109.

    Article  Google Scholar 

  • Dincer T. and Payne B.R. (1971) An environmental isotope study of the south-western karst region of Turkey. J. Hydrol. 14, 233–258.

    Article  Google Scholar 

  • Dunkle S.A., Plummer L.N., Denver J.M., Hamilton P.A., Michel R.L. and Coplen T.B. (1993) Chlorofluorocarbons (CC13F and CC12F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour. Res. 29(12), 3837–3860.

    Article  CAS  Google Scholar 

  • Edmunds W.M., Walton N.R.G., Howard M.P.J. and Jacovides J. (1981) Geochemical estimation of aquifer recharge. British Geological Survey, Report WD/OS/80/17.

    Google Scholar 

  • Ekwurzel B., Schlosser P., Smethie Jr. W.M., Plummer L.N., Busenberg E., Michel R.L., Weppernig R. and Stute M. (1994) Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour. Res. 30(6), 1693–1708.

    Article  Google Scholar 

  • Eriksson E. (1958) The possible use of tritium for estimating groundwater storage. Tellus 10, 472–478.

    Article  CAS  Google Scholar 

  • Focazio M.J., Plummer L.N., Böhlke J.K., Busenberg E., Bachman L.J. and Powars D.S. (1998) Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs. US Geological Survey, Water Resources Investigations Report 97-4225, 75 pp.

    Google Scholar 

  • Fontes J.-C. (1980) Environmental isotopes in groundwater hydrology. In Handbook of Environmental Isotope Geochemistry, Vol. 1, eds. P. Fritz and J.-C. Fontes, pp.75–140. Elsevier, Amsterdam.

    Google Scholar 

  • Gelhar L.W. and Wilson J.L. (1974) Ground-water quality modeling. Ground Water 12(6), 399–408.

    Article  Google Scholar 

  • Geyh M.A. and Backhaus G. (1979) Hydrodynamic aspects of carbon-14 groundwater dating. Isotope Hydrology 1978, Vol. II, pp. 631–643. IAEA, Vienna.

    Google Scholar 

  • Haitjema H.M. (1995) On the residence time distribution in idealized groundwatersheds. J. Hydrol. 172, 127–146.

    Article  Google Scholar 

  • Howard K.W.F. (1985) Denitrification in a major limestone aquifer. J. Hydrol. 76, 265–280.

    Article  CAS  Google Scholar 

  • Johnston C.T., Cook P.G., Frape S.K., Plummer L.N., Busenberg E. and Blackport R.J. (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36(1), 171–180.

    Article  CAS  Google Scholar 

  • Kendall C., Sklash M.G. and Bullen T.D. (1995) Isotope tracers of water and solute sources in catchments. In Solute Modelling in Catchment Systems, ed. S.T. Trudgill, pp.261–303. Wiley, Chichester.

    Google Scholar 

  • Krishnaswami S., Graustein W.C., Turekian K.K. and Dowd J.F. (1982) Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resour. Res. 18(6), 1633–1675.

    Article  Google Scholar 

  • Leaney F.W. and Allison G.B. (1986) Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J. Hydrol. 88, 129–145.

    Article  CAS  Google Scholar 

  • Lerner D.N. and Papatolios K.T. (1993) A simple analytical approach for predicting nitrate concentrations in pumped ground water. Ground Water 31(3), 370–375.

    Article  CAS  Google Scholar 

  • Letolle R. and Olive P. (1983) Isotopes as pollution tracers. In Guidebook on Nuclear Techniques in Hydrology. Tech. Rep. No. 91, pp. 411–422. IAEA, Vienna.

    Google Scholar 

  • Libra R.D., Hallberg G.R. and Hoyer B.E. (1987) Impacts of agricultural chemicals on groundwater quality in Iowa. In Ground Water Quality and Agricultural Practices, ed. D.M. Fairchild, pp. 185–217. Lewis, Chelsea.

    Google Scholar 

  • Maloszewski P., Rauert W., Stichler W. and Herrman A. (1983) Application of flow models to an Alpine catchment area using tritium and deuterium data. J. Hydrol. 66, 319–330.

    Article  Google Scholar 

  • Maloszewski P. and Zuber A. (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J. Hydrol. 57, 207–231.

    Article  CAS  Google Scholar 

  • Maloszewski P. and Zuber A. (1996) Lumped parameter models for the interpretation of environmental tracer data. In Manual on Mathematical Models in Isotope Hydrogeology. IAEA-TECDOC 910, pp. 9–50. IAEA, Vienna.

    Google Scholar 

  • Mazor E. (1972) Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in ground waters: Jordan Rift Valley, Israel. Geochim. Cosmochim. Acta 36, 1321–1336.

    Article  CAS  Google Scholar 

  • Mazor E. and Bosch A. (1992) Helium as a semi-quantitative tool for groundwater dating in the range of 1041—108 years. In Isotopes of Noble Gases as Tracers in Environmental Studies, pp. 163–178. IAEA, Vienna.

    Google Scholar 

  • Modica E., Buxton H.T. and Plummer L.N. (1998) Evaluating the source and residence times of groundwater seepage to streams, New Jersey Coastal Plain. Water Resour. Res. 34(11), 2797–2810.

    Article  CAS  Google Scholar 

  • Nydal R. and Lövseth K. (1996) Carbon-14 measurments in atmospheric CO2 from northern and southern hemisphere sites, 1962-1993. ORNL/CDIAC-93 NDP-057. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Book  Google Scholar 

  • Pearson Jr. F.J. and White D.E. (1967) Carbon 14 ages and flow rates of water in Carrizo Sand, Atascosa County, Texas. Water Resour. Res. 3(1), 251–261.

    Article  CAS  Google Scholar 

  • Phillips F.M., Mattick J.L., Duval T.A., Elmore D. and Kubik P.W. (1988) Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour. Res. 24(11), 1877–1891.

    Article  CAS  Google Scholar 

  • Phillips F.M., Tansey M.K., Peeters L.A., Cheng S. and Long A. (1989) An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour. Res. 25(10), 2259–2273.

    Article  CAS  Google Scholar 

  • Plummer L.N., Busby J.F., Lee R.W. and Hanshaw B.B. (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 26(9), 1981–2014.

    Article  Google Scholar 

  • Portniaguine O. and Solomon D.K. (1998) Parameter estimation using groundwater age and head data, Cape Cod, Massachusetts. Water Resour. Res. 34(4), 637–645.

    Article  CAS  Google Scholar 

  • Postma D., Boesen C., Kristiansen H. and Larsen F. (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour. Res. 27(8), 2027–2045.

    Article  CAS  Google Scholar 

  • Przewlocki K. and Yurtsever Y. (1974) Some conceptual mathematical models and digital simulation approach in the use of tracers in hydrological systems. Isotope Techniques in Groundwater Hydrology 1974, Vol. II, pp. 425–450. IAEA, Vienna.

    Google Scholar 

  • Raats P.A.C. (1981) Residence times of water and solutes within and below the root zone. Agric. Water Manage. 4(1), 63–82.

    Article  Google Scholar 

  • Reilly T.E., Plummer L.N., Phillips P.J. and Busenberg E. (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour. Res. 30(2), 421–433.

    Article  Google Scholar 

  • Robertson W.D. and Cherry J.A. (1989) Tritium as an indicator of recharge and dispersion in a groundwater system in Central Ontario. Water Resour. Res. 25(6), 1097–1109.

    Article  CAS  Google Scholar 

  • Robertson W.D., Cherry J.A. and Schiff S.L. (1989) Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resour. Res. 25(6), 1111–1123.

    Article  CAS  Google Scholar 

  • Robertson W.D. and Schiff S.L. (1994) Fractionation of sulphur isotopes during biogenic sulphate reduction below a sandy forested recharge area in south-central Canada. J. Hydrol. 158, 123–134.

    Article  CAS  Google Scholar 

  • Sanford W.E. and Buapeng S. (1996) A comparison of groundwater ages based on 14C data and three dimensional advective transport modelling of the Lower Chao Phraya Basin: effects of palaeohydrology and implications for water resources development in Thailand. Isotopes in Water Resources Management, Vol. 2, pp. 383–394. IAEA, Vienna.

    Google Scholar 

  • Scanion B.R. (1992) Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations. Water Resour. Res. 28(1), 285–297.

    Article  Google Scholar 

  • Schlosser P., Stute M., Sonntag C. and Munnich K. (1989) Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256.

    Article  CAS  Google Scholar 

  • Shapiro S.D. (1998) Evaluation of the 3H-3He dating technique in complex hydrologic environments. Unpubl. PhD thesis, Columbia University, 253 pp.

    Google Scholar 

  • Sheets R.A., Bair E.S. and Rowe G.L. (1998) Use of 3H/3He ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Resour. Res. 34(5), 1077–1089.

    Article  CAS  Google Scholar 

  • Smith D.B., Wearn P.L., Richards H.J. and Rowe P.C. (1970) Water movement in the unsaturated zone of high and low permeability strata by measuring natural tritium. Isotope Hydrology 1970, pp.73–87. IAEA, Vienna.

    Google Scholar 

  • Solomon D.K., Poreda R.J., Cook P.G. and Hunt A. (1995) Site characterization using 3H/3He ground-water ages, Cape Cod, MA. Ground Water 33(6), 988–996.

    Article  CAS  Google Scholar 

  • Solomon D.K., Hunt A. and Poreda R.J. (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour. Res. 32(6), 1805–1813.

    Article  CAS  Google Scholar 

  • Strack O.D.L. (1989) Groundwater Mechanics. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Strebel O., Böttcher J. and Fritz P. (1990) Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121, 155–172.

    Article  CAS  Google Scholar 

  • Stute M. and Schlosser P. (1993) Principles and applications of the noble gas paleothermometer. In Climate Change in Continental Isotopic Records, eds. P.K. Swart, K.C. Lohmann, J. McKenzie and S. Savin, pp.89–100. American Geophysical Union, Geophysical Monograph 78.

    Google Scholar 

  • Sudicky E.A. and Frind E.O. (1981) Carbon 14 dating of groundwater in confined aquifers: implications of aquitard diffusion. Water Resour. Res. 17(4), 1060–1064.

    Article  Google Scholar 

  • Szabo Z., Rice D.E., Plummer L.N., Busenberg E. and Drenkard S. (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium3, and flow path analysis, southern New Jersey coastal plain. Water Resour. Res. 32(4), 1023–1038.

    Article  CAS  Google Scholar 

  • Tenu A., Noto P., Cortecci G. and Nuti S. (1975) Environmental isotopic study of the Barremian — Jurassic aquifer in South Dobrogea (Roumania). J. Hydrol. 26, 185–198.

    Article  CAS  Google Scholar 

  • Thorstenson D.C., Weeks E.P., Haas H. and Fisher D.W. (1983) Distribution of gaseous 12CO2, 13CO2, and 14CO2 in the sub-soil unsaturated zone of the western US Great Plains. Radiocarbon 25(2), 315–346.

    CAS  Google Scholar 

  • Torgersen T. and Clarke W.B. (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia Geochim. Cosmochim. Acta 49, 1211–1218.

    Article  CAS  Google Scholar 

  • Tyler S.W. and Walker G.R. (1994) Root zone effects on tracer migration in arid zones. Soil Sci. Soc. Amer. J. 58(1), 25–31.

    Article  Google Scholar 

  • Verhagen B.T. (1992) Detailed geohydrology with environmental isotopes. A case study at Serowe, Botswana. Isotope Techniques in Water Resources Development 1991, pp. 345–362. IAEA, Vienna.

    Google Scholar 

  • Vogel J.C. (1967) Investigation of groundwater flow with radiocarbon. Isotopes in Hydrology, pp. 355–369 IAEA, Vienna.

    Google Scholar 

  • Vogel J.C., Talma A.S. and Heaton T.H.E. (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J. Hydrol. 50, 191–200.

    Article  CAS  Google Scholar 

  • Walker G.R. and Cook P.G. (1991) The importance of considering diffusion when using carbon-14 to estimate groundwater recharge to an unconfined aquifer. J. Hydrol. 128, 41–48.

    Article  CAS  Google Scholar 

  • Warner M.J. and Weiss R.F. (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. 32, 1485–1497.

    Article  CAS  Google Scholar 

  • Weeks E.P., Earp D.E. and Thompson G.M (1982) Use of atmospheric fluorocarbons F-11 and F-12 to determine the diffusion parameters of the unsaturated zone in the Southern High Plains of Texas. Water Resour. Res. 18(5), 1365–1378.

    Article  CAS  Google Scholar 

  • Wilhelm E., Battino R. and Wilcock R.J. (1977) Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262.

    Article  CAS  Google Scholar 

  • Wilson G.B., Andrews J.N. and Bath A.H. (1990) Dissolved gas evidence for denitrification in the Lincolnshire Limestone groundwaters, eastern England. J. Hydrol. 113, 51–60.

    Article  CAS  Google Scholar 

  • Yurtsever Y. and Payne B.R. (1986) Mathematical models based on compartmental simulation approach for quantitative interpretation of tracer data in hydrological systems. 5th Int. Symp. Underground Water Tracing, pp.341–353. Institute of Geology and Mineral Exploration, Athens.

    Google Scholar 

  • Zhao X., Fritzel T.L.B., Quinodoz H.A.M., Bethke C.M. and Torgersen T. (1998) Controls on the distribution and isotopic composition of helium in deep ground-water flows. Geology 26, 291–294.

    Article  CAS  Google Scholar 

  • Zimmerman U., Münnich K.O., Roether W., Kreutz W., Schubach K. and Siegel O. (1966) Tracers determine movement of soil moisture and evapotranspiration. Science 152, 346–347.

    Article  Google Scholar 

  • Zuber A. (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In Handbook of Environmental Isotope Geochemistry, Vol. 2, eds. P. Fritz and J.-C. Fontes, pp. 1–59. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cook, P.G., Böhlke, JK. (2000). Determining Timescales for Groundwater Flow and Solute Transport. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics