Skip to main content

Matching: Arc Routing and the Solution Connection

  • Chapter
Arc Routing

Abstract

Given an undirected graph G = (V, E), a matching ME is a subset of edges no two of which are incident with a common vertex. For any ME, we define V(M) as the set of vertices incident to some edge in M. A matching M in G is called a maximum cardinality matching in G if ∣M∣ ≥ ∣M′∣ for all matchings M′in G. A perfect matching is a matching M with V(M) =V. Note that for the existence of perfect matchings ∣V∣ has to be an even number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altinkemer, K., and B. Gavish [1991]: Parallel savings based heuristics for the delivery problem; Operations Research 39, 456–469.

    Article  MathSciNet  MATH  Google Scholar 

  2. Applegate, D., and W. Cook [1993]: Solving large-scale matching problems; in: Network Flows and Matching: First DIMACS Implementation Challenge (D.S. Johnson and C.C. McGeoch, editors), American Mathematical Society, 557–576.

    Google Scholar 

  3. Bachem, A., and M. Malich [1993]: The simulated trading heuristic for solving vehicle routing problems; Operations Research 93, 16–19.

    Google Scholar 

  4. Balinski, M.L. [1972]: Establishing the matching polytope; J. Comb. Theory, Ser. B 13, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, M.O., L.D. Bodin, and R. Dial [1983]: A matching based heuristic for scheduling mass transit crews and vehicles; Transportation Science 17, 4–31.

    Article  Google Scholar 

  6. Ball, M.O., and U. Derigs [1983]: An analysis of alternate strategies for implementing matching algorithms; Networks 13, 517–549.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball, M.O., U. Derigs, C. Hilbrand, and A. Metz [1990]: Matching problems with generalized upper bound side constraints; Networks 20, 703–721.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bendisch, J., U. Derigs, and A. Metz [1994]: An efficient matching algorithm applied in statistical physis; Discrete Applied Mathematics 52, 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  9. Berge, C. [1957]: Two theorems in graph theory; Proc. Natl. Acad. Sci. USA, 43, 842–844.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodin, L. and B. Golden [1981]: Classification in Vehicle Routing and Scheduling; Networks 11, 97–108.

    Article  Google Scholar 

  11. Burkard, R.E., and U. Derigs [1980]: Assignment and matching problems: Solution methods with FORTRAN-programs; Springer Lecture Notes in Mathematical Systems No. 184.

    Google Scholar 

  12. Carraresi, P., and G. Gallo [1984]: Network models for vehicle and crew scheduling; EJOR 16, 139–151.

    Article  MathSciNet  MATH  Google Scholar 

  13. Christofides, N. [1976]: Worst-case analysis of a new heuristic for the traveling salesman problem; Management Science Research Report No. 388, Carnegie-Mellon University.

    Google Scholar 

  14. Cook, W., and A. Rohe [1998]: Computing minimum weight perfect matchings; to appear in: ORSA J. on Computing.

    Google Scholar 

  15. Cornuejols, G., and G.L. Nemhauser [1978]: Tight bounds for Christofides traveling salesman heuristic; Math. Programming 14, 116–121.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cunningham, W.H., and A.B. Marsh [1976]: A primal algorithm for optimal matching; Math. Programming Study 8, 50–72.

    Article  MathSciNet  Google Scholar 

  17. Derigs, U. [1981a]: A shortest augmenting path method for solving minimal perfect matching problems; Networks 11, 379–390.

    Article  MathSciNet  MATH  Google Scholar 

  18. Derigs, U. [1981b]: On some experiments with a composite heuristic for solving traveling salesman problems; Methods of Operations Research 40, 287–290.

    MATH  Google Scholar 

  19. Derigs, U. [1981c]: Another composite heuristic for solving the traveling salesman problem; University of Maryland, Working Paper.

    Google Scholar 

  20. Derigs, U. [1982]: Shortest augmenting paths and sensitivity analysis for optimal matchings; Report 82222-OR, Institut für Ökonometrie und Operations Research, Universität Bonn.

    Google Scholar 

  21. Derigs, U. [1985]: The shortest augmenting path method for solving assignment problems — Motivation and computational experience; Annals of Operations Research 4, 57–102.

    Article  MathSciNet  Google Scholar 

  22. Derigs, U. [1986]: Solving large-scale matching problems efficiently — A new primal matching approach; Networks 16, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  23. Derigs, U. [1988a]: Programming in networks and graphs — On the combinatorial background and near-equivalence of network flow and matching algorithms; Lecture Notes in Economics and Mathematical Systems 300, Springer-Verlag.

    Google Scholar 

  24. Derigs, U. [1988b]: Solving non-bipartite matching problems via shortest path techniques; Annals of Operations Research 13, 225–261.

    Article  MathSciNet  Google Scholar 

  25. Derigs, U. and A. Metz [1986a]: On the use of optimal fractional matchings for solving the (integer) matching problem; Computing 36, 263–270.

    Article  MathSciNet  MATH  Google Scholar 

  26. Derigs, U. and A. Metz [1986b]: An in-core/out-of-core method for solving large scale assignment problems; Zeitschrift für Operations Research 30, A181–A195.

    MathSciNet  Google Scholar 

  27. Derigs, U., and A. Metz [1991]: Solving (large scale) matching problems combinatorially; Math. Programming 50, 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  28. Derigs, U., and A. Metz [1992a]: Über die Matching Relaxation für das Set Partitioning Problem; in: Operations Research Proceedings 1991, 398–406.

    Google Scholar 

  29. Derigs, U., and A. Metz [1992b]: Matching problems with knapsack side constraints — A computational study; in: Modern Methods of Optimization (ed. by W. Krabs and J. Zowe), Springer Lecture Notes in Economics and Mathematical Systems 378, 48–89.

    Google Scholar 

  30. Derigs, U., and A. Metz [1992c]: A matching based approach for solving a delivery/pick-up vehicle routing problem with time constraints; OR Spektrum 14, 91–106.

    Article  MathSciNet  MATH  Google Scholar 

  31. Desrochers, M., and T.W. Verhoog [1991]: A new heuristic for the fleet size and mix vehicle routing problem; Computers and Operations Research 18, 263–274.

    Article  MATH  Google Scholar 

  32. Dijkstra, E.W. [1959]: A note on two problems in connection with graphs; Numerische Mathematik 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  33. Dror, M., and L. Levy [1986]: A vehicle routing improvement algorithm comparison of a ”greedy” and matching implementation for inventory routing; Computers and Operations Research 13, 33–45.

    Article  MATH  Google Scholar 

  34. Edmonds, J. [1965a]: Paths, trees and flowers; Can J. Math. 17, 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  35. Edmonds, J. [1965b]: Maximum matching and a polyhedron with 0,1 vertices; J. Res. Natl. Bur. Standards 69B, 125–130.

    Article  MathSciNet  Google Scholar 

  36. Edmonds, J., and E.L. Johnson [1973]: Matching, Euler tours and the Chinese postman; Math. Programming 5, 88–124.

    Article  MathSciNet  MATH  Google Scholar 

  37. Edmonds, J. and W. Pulleyblank [1974]: Facets of 1-matching polyhedra; in: Hypergraph Seminar, Lecture Notes in Mathematics, 411, 214–242.

    Article  MathSciNet  Google Scholar 

  38. Euler, L. [1736]: Solutio problematis ad geometriam situs pertinentis; Comment. Acad. Sci. Imp. Petropolitanae 8, 128–140.

    Google Scholar 

  39. Fujii, M., T. Kasami, and N. Ninomiya [1969]: Optimal sequencing of two equivalent processors; SIAM J. Appl. Math 17, 784–789 [Erratum in: SIAM J. Appl. Math. 20 (1971) 141].

    Article  MathSciNet  MATH  Google Scholar 

  40. Gabow, H.N. [1976]: An efficient implementation of Edmond’ s algorithm for maximum matching on graphs; J. of the ACM 23, 221–234.

    Article  MathSciNet  MATH  Google Scholar 

  41. Gabow, H.N. [1990]: Data structes for weighted matching and nearest common ancestors with linking; Proc. of the First Annual ACM-SIAM Symp. on Discrete Algorithms, ACM, New York, 434–443.

    Google Scholar 

  42. Gabow, H.N., and R.E. Tarjan [1983]: A linear-time algorithm for a special case of disjoint set union; Proc. 15th Annual ACM Symp. on Theory of Computing, York, N.Y., 246–251.

    Google Scholar 

  43. Gabow, H.N., and R.E. Tarjan [1991]: Faster scaling algorithms for general graph matching problems; J. of the ACM 38, 815–853.

    Article  MathSciNet  MATH  Google Scholar 

  44. Gerards, A.M.H. [1995]: Matching; in: Handbooks in OR & MS 7 (M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors), North Holland, Amsterdam.

    Google Scholar 

  45. Grötschel, M. [1977]: Polyedrische Charakterisierung Kombinatorischer Optimierungsprobleme; Mathematical Systems in Economics 36; Verlag Anton Hain, Meisenheim am Glan.

    Google Scholar 

  46. Grötschel, M., and O. Holland [1985]: Solving matching problems with linear programming; Math. Programming 33, 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  47. Hasselström, D. [1976]: Connecting bus-routes at a point of intersection; AB VOLVO Working Paper.

    Google Scholar 

  48. Held, M., and R.M. Karp [1971]: The traveling salesman problem and minimum spanning trees: Part II; Math. Programming 1, 6–25.

    Article  MathSciNet  MATH  Google Scholar 

  49. Iri, M., K. Murota, and S. Matsui [1983]: An approximate solution for the problem of optimizing the plotter pen movement; in: R.F. Drenick and F. Kozin (eds), ”System Modeling and Optimization”, Proc. 10th IFIP Conf., New York, 1981, Lecture Notes in Control and Information Sciences, Vol. 38, Springer-Verlag, Berlin, 572–580.

    Google Scholar 

  50. Johnson, D.S., and C.C. McGeoch [1993]: Network Flows and Matching — First DIM ACS Implementation Challenge; American Mathematical Society.

    Google Scholar 

  51. Kruskal Jr., J.B. [1956]: On the shortest spanning subtree of a graph and the traveling salesman problem; Proc. Amer. Math. Soc. 7, 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  52. Kuhn, H.W. [1955]: The Hungarian method for the assignment problem; Nav. Res. Log. Quart. 2, 83–97.

    Article  Google Scholar 

  53. Kwan, Mei Ko [1962]: Graphic programming using odd and even points; Chinese Math. 1, 273–277.

    MathSciNet  MATH  Google Scholar 

  54. Lawler, E.L. [1976]: Combinatorial Optimization: Networks and Matroids; Holt, Rinehart, and Winston, New York, N.Y.

    MATH  Google Scholar 

  55. Lin, S., and B.W. Kernighan [1973]: An effective heuristic algorithm for the traveling salesman problem; Operations Research 21, 498–516.

    Article  MathSciNet  MATH  Google Scholar 

  56. Lovasz, L., and M.D. Plummer [1986]: Matching Theory; Annals of Discrete Mathematics 29, North Holland.

    Google Scholar 

  57. Machol, R.E. [1961]: An application of the assignment problem; Operations Research 9, 585–586.

    Article  Google Scholar 

  58. Metz, A. [1987]: Postoptimale Analyse und neue primale Matching Algorithmen; Diploma Thesis, University of Cologne.

    Google Scholar 

  59. Miller, D.L. [1995]: A matching based exact algorithm for capacitated vehicle routing problems; ORSA J. on Computing 7, 1–9.

    Article  MATH  Google Scholar 

  60. Nemhauser, G., and G. Weber [1979]: Optimal set partitioning, matchings and Lagrangean duality; Naval Res. Log. Quart. 26, 553–563.

    MathSciNet  MATH  Google Scholar 

  61. Olafson, S. [1990]: Weighted matching in chess tournaments; Journal of the Operational Research Society 41, 17–24.

    Google Scholar 

  62. Pandit, R. and B. Muraldharan [1995]: A capacitated general routing problem on mixed networks; Computers and Operations Research 26, 465–478.

    Article  Google Scholar 

  63. Papadimitriou, C.H., and K. Steiglitz [1976]: Combinatorial Optimization: Algorithms and Complexity; Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  64. Reingold, E.M., and R.E. Tarjan [1981]: On a greedy heuristic for complete matching; SIAM J. Comput. 10, 676–681.

    Article  MathSciNet  MATH  Google Scholar 

  65. Riskin, E., R. Ladner, R. Wand, and L. Atlas [1994]: Index assignment for progressive transmission of full-search vector quantization; IEEE Transactions on Image Processing 3, 307–312.

    Article  Google Scholar 

  66. Schrijver, A. [1983]: Short proofs on the matching polyhedron; J. Comb. Theory, Ser. B 34, 104–108.

    Article  MathSciNet  MATH  Google Scholar 

  67. Tarjan, R.E. [1983]: Data structures and network algorithms; SIAM. Philadelphia.

    Book  Google Scholar 

  68. Vaidya, P.M. [1989]: Geometry helps in matching; SIAM J. Comput. 18, 1201–1225.

    Article  MathSciNet  MATH  Google Scholar 

  69. Weber, G. [1981]: Sensitivity analysis of optimal matchings; Networks 11, 41–56.

    Article  MathSciNet  MATH  Google Scholar 

  70. Win, Z. [1988]: Contributions to routing problems; Unpublished Ph.D. dissertation Universität Ausburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Derigs, U. (2000). Matching: Arc Routing and the Solution Connection. In: Dror, M. (eds) Arc Routing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4495-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4495-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7026-0

  • Online ISBN: 978-1-4615-4495-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics