Skip to main content

Angiotensin II and Connective Tissue Homeostasis

  • Chapter
The Hypertrophied Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

  • 96 Accesses

Summary

Connective tissue homeostasis refers to self-regulated growth and structure of loose, dense, and specialized connective tissues. De novo generation and coinduction of signals that are either stimulatory or inhibitory to formation of these tissues provide for a reciprocal regulation of their composition. The octapeptide angiotensin (Ang) II is such a growth stimulator. Components involved in Ang II generation and its biologic activity, including angiotensin-converting enzyme (ACE) and Ang II receptors, are expressed by mesenchymal cells (e.g., fibroblasts, adipocytes) responsible for connective tissue turnover. ACE inhibition or ATI receptor antagonism each attenuate formation of these connective tissues. Endocrine properties of plasma Ang II involved in maintaining circulatory homeostasis can be broadened to encompass autocrine and paracrine effects of Ang II produced within connective tissues, where this peptide contributes to their homeostatic regulation of structure and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weber KT. 1991. Cardiac interstitium: extracellular space of the myocardium. In The Heart and Cardiovascular System, 2nd ed. Ed. HA Fozzard, E Haber, RB Jennings, AM Katz, and HE Morgan, 1465–1480. New York: Raven Press.

    Google Scholar 

  2. Weber KT, Swamynathan SK, Guntaka RV, Sun Y. 1999. Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol 31:395–403.

    Article  PubMed  CAS  Google Scholar 

  3. Bayreuther K, Rodemann HP, Francz PI, Maier K. 1998. Differentiation of fibroblast stem eels. J Cell Sci Suppl 10:115–130.

    Google Scholar 

  4. Bottari SP, de Gasparo M, Steckelings UM, Levens NR. 1993. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinol 14:123–171.

    Article  PubMed  CAS  Google Scholar 

  5. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD. 1993. Angiotensin II receptors and II receptor antagonists. Pharmacol Rev 45:205–251.

    PubMed  CAS  Google Scholar 

  6. Weber KT. 1997. Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96:4065–4082.

    Article  PubMed  CAS  Google Scholar 

  7. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. 1995. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95: 651–657.

    Article  PubMed  CAS  Google Scholar 

  8. Nakajima M, Hutchinson HG, Fuginaga M, Hayashida W, Zhang L, Horiucki M, Pratt RE, Dzau VJ. 1995. The angiotensin II type 2 (AT2) antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Nail Acad Sci USA 92:10663–10667.

    Article  CAS  Google Scholar 

  9. Azizi M, Rousseau A, Ezan E, Guyene T-T, Michelet S, Grognet J-M, Lenfant M, Corvol P, Ménard J. 1996. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulatory N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest 97:839–844.

    Article  PubMed  CAS  Google Scholar 

  10. Rousseau-Plasse A, Lenfant M, Potier P. 1996. Catabolism of the hemoregulatory peptide N-Acetyl-Ser-Asp-Lys-Pro: a new insight into the physiological role of the angiotensin-I-converting enzyme N-active site. Bioorg Med Chem 4:1113–1119.

    Article  PubMed  CAS  Google Scholar 

  11. Weber KT. 1989. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652.

    Article  PubMed  CAS  Google Scholar 

  12. Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. 1997. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor β3: Dev Dyn 209:296–309.

    Article  PubMed  CAS  Google Scholar 

  13. Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB. 1991. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor β3. Proc Natl Acad Sci USA 88:1516–1520.

    Article  PubMed  CAS  Google Scholar 

  14. Lamparter S, Sun Y, Weber KT. 1999. Angiotensin II receptor blockade during gestation attenuates collagen formation in the developing rat heart. Cardiovasc Res 43:165–172.

    Article  PubMed  CAS  Google Scholar 

  15. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. 1991. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88:921–933.

    Article  PubMed  CAS  Google Scholar 

  16. Caspari PG, Gibson K, Harris P. 1976. Changes in myocardial collagen in normal development and after β blockade, In Biochemistry and Pharmacology of Myocardial Hypertrophy, Hypoxia, and Infarction. Ed. P Harris, RJ Bing, and A Fleckenstein, 99–104. Baltimore: University Park Press. (Rona G, ed. Recent Advances in Studies on Cardiac Structure and Metabolism, vol. 7.)

    Google Scholar 

  17. Robinson TF, Geraci MA, Sonnenblick EH, Factor SM. 1988. Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution, and changes in configuration. Circ Res 63:577–592.

    Article  PubMed  CAS  Google Scholar 

  18. Sun Y, Diaz-Arias AA, Weber KT. 1994. Angiotensin-converting enzyme, bradykinin and angiotensin II receptor binding in rat skin, tendon and heart valves: an in vitro quantitative autoradiographic study. J Lab Clin Med 123:372–377.

    PubMed  CAS  Google Scholar 

  19. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO. 1991. Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141–149.

    Article  PubMed  CAS  Google Scholar 

  20. Pinto JE, Viglione P, Saavedra JM. 1991. Autoradiographic localization and quantification of rat heart angiotensin converting enzyme. Am J Hypertens 4:321–326.

    PubMed  CAS  Google Scholar 

  21. Katwa LC, Ratajska A, Cleutjens JPM, Sun Y, Zhou G, Lee SJ, Weber KT. 1995. Angiotensin converting enzyme and kininase-II-like activities in cultured valvular interstitial cells of the rat heart. Cardiovasc Res 29:57–64.

    PubMed  CAS  Google Scholar 

  22. Katwa LC, Tyagi SC, Campbell SE, Lee SJ, Cicila GT, Weber KT. 1996. Valvular interstitial cells express angiotensinogen, cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 28:807–821.

    Article  PubMed  CAS  Google Scholar 

  23. Katwa LC, Campbell SE, Tyagi SC, Lee SJ, Cicila GT, Weber KT. 1997. Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 29:1375–1386.

    Article  PubMed  CAS  Google Scholar 

  24. Katwa LC, Sun Y, Campbell SE, Tyagi SC, Dhalla AK, Kandala JC, Weber KT. 1998. Pouch tissue and angiotensin peptide generation. J Mol Cell Cardiol 30:1401–1413.

    Article  PubMed  CAS  Google Scholar 

  25. Zorad S, Fickova M, Zelezna B, Macho L, Kral JG. 1995. The role of angiotensin II and its receptors in regulation of adipose tissue metabolism and cellularity. Gen Physiol Biophys 14:383 –391.

    PubMed  CAS  Google Scholar 

  26. Cassis LA, Lynch KR, Peach MJ. 1998. Localization of angiotensinogen messenger RNA in rat aorta. Circ Res 62:1259–1262.

    Article  Google Scholar 

  27. Campbell DJ, Habener JF. 1987. Cellular localization of angiotensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization in situ. Endocrinology 121:1616–1626.

    Article  PubMed  CAS  Google Scholar 

  28. Shenoy U, Cassis L. 1997. Characterization of renin activity in brown adipose tissue. Am J Physiol 272:C989-C999.

    PubMed  CAS  Google Scholar 

  29. Jonsson JR, Game PA, Head RJ, Frewin DB. 1994.The expression and localisation of the angiotensin-converting enzyme mRNA in human adipose tissue. Blood Press 3:72–75.

    Article  PubMed  CAS  Google Scholar 

  30. Crandall DL, Herzlinger HE, Saunders BD, Kral JG. 1994. Developmental aspects of the adipose tissue renin-angiotensin system: therapeutic implications. Drug Dev Res 32:117–125.

    Article  CAS  Google Scholar 

  31. Frederich RC Jr, Kahn BB, Peach MJ, Flier JS. 1992. Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 19:339–344.

    Article  PubMed  CAS  Google Scholar 

  32. Jones BH, Standridge MK, Taylor JW, Moustaïd N. 1997. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol 273:R236-R242.

    PubMed  CAS  Google Scholar 

  33. Jones BH, Standridge MK, Moustaid N. 1997. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138:1512–1519.

    Article  PubMed  CAS  Google Scholar 

  34. Darimont C, Vassaux G, Ailhaud G, Negrel R. 1994. Differentiation of preadipose cells: paracrine role of prostacydin upon stimulation of adipose cells by angiotensin-II. Endocrinology 135: 2030–2036.

    Article  PubMed  CAS  Google Scholar 

  35. Crandall DL, Herzlinger HE, Saunders BD, Armellino DC, Kral JG. 1994. Distribution of angiotensin II receptors in rat and human adipocytes. J Lipid Res 35:1378–1385.

    PubMed  CAS  Google Scholar 

  36. McGrath BP, Matthews PG, Louis W, Howes L, Whitworth JA, Kincaid-Smith PS, Fraser I, Scheinkestel C, MacDonald G, Railings M. 1990. Double-blind study of dilevalol and captopril, both in combination with hydrochorothiazide, in patients with moderate to severe hypertension. J Cardiovasc Pharmacol 16:831–838.

    Article  PubMed  CAS  Google Scholar 

  37. Gomez RA, Norling LL, Wilfong N, Isakson P, Lynch KR, Hock R, Quesenberry P. 1993. Leukocytes synthesize angiotensinogen. Hypertension 21:470–475.

    Article  PubMed  CAS  Google Scholar 

  38. Mrug M, Stopka T, Julian BA, Prchal JF, Prchal JT. 1997. Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest 100:2310–2314.

    Article  PubMed  CAS  Google Scholar 

  39. Danovitch GM, Jamgotchian NJ, Eggena PH, Paul W, Barrett JD, Wilkinson A, Lee DBN. 1995. Angiotensin-converting enzyme inhibition in the treatment of renal transplant erythrocytosis. Clinical experience and observation of mechanism. Transplantation 60:132–137.

    PubMed  CAS  Google Scholar 

  40. Julian BA, Gaston RS, Barker CV, Krystal G, Diethelm AG, Curtis JJ. 1994. Erythropoiesis after withdrawal of enalapril in post-transplant erythrocytosis. Kidney Int 46:1397–1403.

    Article  PubMed  CAS  Google Scholar 

  41. Wintroub BU, Klickstein LB, Watt KW. 1981. A human neutrophil-dependent pathway for generation of angiotensin II. Purification of the product and identification as angiotensin II. J Clin Invest 68:484–490.

    Article  PubMed  CAS  Google Scholar 

  42. Tonnesen MG, Klempner MS, Austen KY, Wintroub BU. 1982. Identification of a human neutrophil angiotensin II-generating protease as cathepsin G. J Clin Invest 69:25–30.

    Article  PubMed  CAS  Google Scholar 

  43. Klickstein LB, Kaempfer CE, Wintroub BU. 1982. The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G. J Biol Chem 257:15042–15046.

    PubMed  CAS  Google Scholar 

  44. Friedland J, Setton C, Silverstein E. 1978. Induction of angiotensin converting enzyme in human myocytes in culture. Biochem Biophys Res Commun 83:843–849.

    Article  PubMed  CAS  Google Scholar 

  45. Shimada K, Yazaki Y. 1978. Binding sites for angiotensin II in human mononuclear leucocytes. J Biochem (Tokyo) 84:1013–1015.

    CAS  Google Scholar 

  46. Thomas DW, Hoffman MD. 1984. Identification of macrophage receptors for angiotensin: a potential role in antigen uptake for T lymphocyte responses? J Immunol 132:2807–2812.

    PubMed  CAS  Google Scholar 

  47. Simon MR, Kamlay MT, Khan M, Melmon K. 1989. Angiotensin II binding to human mononuclear cells. Immunopharmocol Immunotoxicol 11:63–80.

    Article  CAS  Google Scholar 

  48. Neyses L, Locher M, Wehling M, Pech H, Tenschert W, Vetter W. 1984. Angiotensin II binding to human mononuclear cells: receptor or free fluid endocytosis? Clin Sci 66:605–612.

    PubMed  CAS  Google Scholar 

  49. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. 1993. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111.

    Article  PubMed  Google Scholar 

  50. Fóris G, Dersö B, Medgyesi GA, Füst G. 1983. Effect of angiotensin II on macrophage functions. Immunology 48:529–535.

    PubMed  Google Scholar 

  51. Nairn R, Spengler ML, Hoffman MD, Solvay MJ, Thomas DW. 1984. Macrophage processing of peptide antigens: identification of an antigen complex. J Immunol 133:3225–3234.

    PubMed  CAS  Google Scholar 

  52. Manolagas SC, Jilka RL. 1992. Cytokines, hematopoiesis, osteoclastogenesis, and estrogens. Calcif Tissue Int 50:199–202.

    Article  PubMed  CAS  Google Scholar 

  53. Hiruma Y, Inoue A, Hirose S., Hagiwara H. 1997. Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun 230:176–178.

    Article  PubMed  CAS  Google Scholar 

  54. Lamparter S, Kling L, Schrader M, Ziegler R., Pfeilschifter J. 1998. Effects of angiotensin II on bone cells in vitro. J Cell Physiol 175:89–98.

    Article  PubMed  CAS  Google Scholar 

  55. Barr M Jr, Cohen MM Jr. 1991. ACE inhibitor fetopathy and hypocalvaria: the kidney-skull connection. Teratology 44:485–495.

    Article  PubMed  CAS  Google Scholar 

  56. Hatton R, Stimpel M, Chambers TJ. 1997. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol 152:5–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weber, K.T. (2000). Angiotensin II and Connective Tissue Homeostasis. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics