Skip to main content

Three-Dimensional Nuclear Size and DNA Content in Hypertensive Heart Disease

  • Chapter

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

Summary

Cardiac myocyte hypertrophy is commonly observed histologically in the hypertensive heart. Hypertrophic nuclei of myocytes are also detected in myocardial tissue. However, it is not clear whether an increase of nuclear size in myocytes indicates high DNA synthesis in hypertensive hearts. A total of 20 human hearts obtained at autopsy were studied. Following preparation of the hearts, the myocardium was weighed and total DNA content was determined biochemically. The DNA content was calculated by flow cytometry, and the structural changes of myocyte nuclei were visualized by three-dimensional (3-D) reconstruction. The percentage of myocytes in the G2M phase of the cell cycle was significandy increased in hypertensive hearts, compared with control hearts. The number of S-phase myocytes in hypertensive hearts was approximately twice that in control hearts. The 3-D myocardial nuclear size was bigger in hypertensive hearts than in control hearts. In conclusion, there were no dramatic changes of the DNA content and 3-D nuclear size, and such changes depended on remodeling of the intranuclear matrix in hypertrophic myocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grossman W. 1980. Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 69:576–580.

    Article  PubMed  CAS  Google Scholar 

  2. Baba HA, Takeda A, Schmid C, Nagano M. 1996. Early proliferative changes in hearts of hypertensive Goldblatt rats: an immunohistochemical and flow-cytometrical study. Basic Res Cardiol 91:275–282.

    Article  PubMed  CAS  Google Scholar 

  3. Komuro I, Kurabayashi M, Shibazaki Y, Katoh Y, Hoh E, Kaida T, Ikeda K, Takaku F, Yazaki Y. 1990. Molecular mechanism of cardiac hypertrophy. Jpn Circ J 54:526–534.

    Article  PubMed  CAS  Google Scholar 

  4. Badeer HS. 1972. Development of cardiomegaly. A unifying hypothesis explaining the growth of muscle fiber, blood vessels and collagen of heart. Cardiology 57:247.

    Article  PubMed  CAS  Google Scholar 

  5. Hollander W. 1976. Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 38:786.

    Article  PubMed  CAS  Google Scholar 

  6. Kannel WB, Castelli WP, McNamara PL, McKee PA, Feinleib M. 1972. Role of blood pressure in the development of congestive heart failure. N Engl J Med 287:784.

    Article  Google Scholar 

  7. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP. 1990. A molecular basis for hypertrophic cardiomyopathy. Cell 62:999–1006.

    Article  PubMed  CAS  Google Scholar 

  8. Tanigawa G, Jarcho JA, Kass S, Solomon SD, Vosberg HP, Seidman JG, Seidman CE. 1990. A molecular basis for familial hypertrophic cardiomyopathy. Cell 62:991–998.

    Article  PubMed  CAS  Google Scholar 

  9. Takeda A, Takeda N. 1997. Different pathophysiology of cardiac hypertrophy in hypertension and hypertrophic cardiomyopathy. J Mol Cardiol 29:2961–2965.

    Article  CAS  Google Scholar 

  10. Takeda A, Chiba S, Iwai T, Tanamura A, Yamaguchi Y, Takeda N. 1998. Cell cycle of myocytes of cardiac and skeletal muscle in mitochondrial myopathy. Jpn Circ J 62:695–699.

    Article  PubMed  CAS  Google Scholar 

  11. Tezuka F. 1975. Muscle fiber orientation in normal and hypertrophied hearts. Tohoku J Exp Med 117:289–297.

    Article  PubMed  CAS  Google Scholar 

  12. Stephenson RA, Gay H, Fair WR. 1986. Effect of section thickness on quality of flow cytometric DNA content determinations in paraffin-embedded tissue. Cytometry 7:41–44.

    Article  PubMed  CAS  Google Scholar 

  13. David W, Hedley ML, Friedlander IW, Taylor LW. 1983. Method for analysis of celluar DNA content of paraffin-embedded pathological materials using flow cytometry. J Histochem Cytochem 31:1333–1335.

    Article  Google Scholar 

  14. David W, Hedley ML, Friedlander IW, Taylor LW. 1985. Application of DNA flow cytometry to paraffin-embedded archival material for the study of aneuploid and its clinical significance. Cytometry 6:327–333.

    Article  Google Scholar 

  15. Hedley DW, Friedlander ML, Taylor LW. 1985. Application of DNA flowcytometry to paraffin-embedded archival materials for the study of aneuploid and clinical significance. Cytometry 6:327–333.

    Article  PubMed  CAS  Google Scholar 

  16. Reynder SB, Bosman MJ. 1985. Flow cytometric determination of DNA ploid level in nuclei isolated from paraffin-embedded tissue. Cytometry 6:26–30.

    Article  Google Scholar 

  17. Fried J. 1976. Method for the quantitative evaluation of data from microfluorometry. Comput Biomed Res 9:263.

    Article  PubMed  CAS  Google Scholar 

  18. Dean PN, Jett JH. 1974. Mathematical analysis of DNA distribution derived from flow microfluorometry. J Cell Biol 60:523.

    Article  PubMed  CAS  Google Scholar 

  19. Vindelov LL, Christensen IJ, Nissen NI. 1983. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327.

    Article  PubMed  CAS  Google Scholar 

  20. Takeda A, Kawai S, Okada R, Nagai M, Takeda N, Nagano M. 1993. Three-dimensional distribution of myocardial fibrosis in the new J-2-N cardiomyopathic hamster: comparison with electrocardiographic findings. Heart Vessels 8:186–193.

    Google Scholar 

  21. Linzbach AJ. 1976. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol 18:1–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeda, A., Hayashi, Y., Shikata, C., Tanaka, Y., Takeda, N. (2000). Three-Dimensional Nuclear Size and DNA Content in Hypertensive Heart Disease. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics