Skip to main content

Diagnosis Strategies and Systems: Principles, Fuzzy and Neural Approaches

  • Chapter

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 15))

Abstract

Fault tolerance of automatic control systems is gaining increasing importance. This is due to the increasing complexity of modern control systems and the growing demands for quality, cost efficiency, availability, reliability and safety. The use of knowledge based systems and of various“intelligent technologies” demonstrated significant improvements over the classic techniques. In this chapter, we review the state of this development along with the enumeration of some successful applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann, P. and P.M. Frank (1997).“On Fuzzy Model-building in Observers for Fault Diagnosis,” IMACS World Congress, Berlin, vol.6, pp.695–700.

    Google Scholar 

  • Amann, P. et al. (1997).“Fuzzy Observer for Fault Detection in Complex Systems Applied to Detection of Critical Driving Situations.” ESF Third Joint COSY Workshop Control of Complex Systems, Budapest, pp. 153–158.

    Google Scholar 

  • Ayoubi, M. (1996a). “Fuzzy Systems Design Based on a Hybrid Neural Structure and Application to Fault Diagnosis of Technical Processes.” Control Engineering Practice 4(1), pp. 35–42.

    Article  Google Scholar 

  • Ayoubi, M. (1996b).“Nonlinear System Identification Based on Neural Networks with Locally Distributed Dynamics and Application to Technical Processes,” Forstschritt-Berichte VDI, Reihe 8, Nr.591, Düsseldorf: VDI-Verlag.

    Google Scholar 

  • Ayoubi, M. and R. Isermann (1997).“Neuro-fuzzy Systems for Diagnosis.” Fuzzy Sets and Systems 89, pp. 289–307.

    Article  Google Scholar 

  • Babuska, R. and H.B. Verbruggen (1996). “An Overview of Fuzzy Modeling for Control.” Control Engineering Practice 4(11), pp. 1593–1606.

    Article  Google Scholar 

  • Ballé, P. et al. (1998).“Integrated Control, Diagnosis and Reconfiguration of a Heat Exchanger.” IEEE Control Systems 18(3), pp. 52–63.

    Article  Google Scholar 

  • Bezdek, J.C. and S.K. Pal (1992).“Fuzzy Models for Pattern Recognition” New York: IEEE Press.

    Google Scholar 

  • Chang, J., S. DiCesare and G. Goldbogen (1991).“Failure Propagation Trees for Diagnosis in Manufacturing Systems”. IEEE Trans. Systems, Man, and Cybernetics 21, pp. 767–776.

    Article  Google Scholar 

  • Chen, J. and R.J. Patton (1998).“Robust Model-based Fault Diagnosis for Dynamic Systems,” Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  • Frank, P.M. (1990).“Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-based Redundancy.” Automatica 26(3), pp. 459–474.

    Article  MATH  Google Scholar 

  • Frank, P.M. and X. Ding (1994).“Frequency Domain Approach to Optimally Robust Residual Generation and Evaluation for Model-based Fault Diagnosis.” Automatica 30(5), pp. 789–804.

    Article  MATH  Google Scholar 

  • Frank, P.M. (1996).“Analytical and Qualitative Model-based Fault Diagnosis — A Survey and Some New Results.” European Journal of Control 2, pp. 6–28.

    MATH  Google Scholar 

  • Frank, P.M. and X. Ding (1997).“Survey of Robust Residual Generation and Evaluation Methods”. Journal of Process Control 7(6), pp. 403–424.

    Article  Google Scholar 

  • Frank, P.M., E. Alcorta-Garcia and B. Koppen-Seliger (1997).“Modeling for Fault Detection and Isolation”. ESF Third Joint COSY Workshop Control of Complex Systems, Budapest, pp.111–129.

    Google Scholar 

  • Frank, P.M., G. Schreier and E. Alcorta Garcia (1999).“Nonlinear Observers for Fault Detection and Isolation”. In H. Nijmeijer and T.I. Fossen (Eds.), New Directions in Nonlinear Observer Design, Berlin: Springer Verlag.

    Google Scholar 

  • Füssel, D., P. Ballé and R. Isermann (1997).“Closed Loop Fault Diagnosis Based on a Nonlinear Process Model and Automatic Fuzzy Rule Generation”. IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes, Kingston upon Hull, vol. 1, pp.359–364.

    Google Scholar 

  • Gertler, J. (1998).“Fault Detection and Diagnosis in Engineering Systems,” New York: Marcel Dekker.

    Google Scholar 

  • Haykin, S. (1994). Neural Networks:“A Comprehensive Foundation,” New York: Macmillan College Publishing Company.

    MATH  Google Scholar 

  • Heiming, B. and J. Lunze (1999). “Three-Tank Benchmark Problem of Controller Reconfiguration.” EUCA/IFAC/IEEE European Control Conference, Karlsruhe.

    Google Scholar 

  • Isermann, R. (1993).“Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing.” Automatica 29(4), pp. 815–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Isermann, R. and P. Ballé (1997).“Trends in the Application of Model-based Fault Detection and Diagnosis of Technical Processes.” Control Engineering Practice 5(5), pp. 709–719.

    Article  Google Scholar 

  • Isermann, R., S. Ernst and. O. Nelles (1997).“Identification with Dynamic Neural Networks — Architectures, Comparisons, Applications.” IFAC Symp. System Identification, Fukuoka, plenary paper.

    Google Scholar 

  • Jang, J.-S.R. and C.-T. Sun (1995).“Neuro-fuzzy Modeling and Control.” Proc. IEEE 83(3), pp. 378–405.

    Article  Google Scholar 

  • Joo, Y.H. et al. (1997).“Fuzzy Systems Modeling by Fuzzy Partition and GA Hybrid Schemes.” Fuzzy Sets and Systems 86, pp. 279–288.

    Article  Google Scholar 

  • Kandel, A. (1986).“Fuzzy Mathematical Techniques with Applications” Massachusetts: Addison-Wesley.

    Google Scholar 

  • Kiupel, N. et al. (1995).“Fuzzy Residual Evaluation Concept.” IEEE Int. Conf. Systems, Man, and Cybernetics, Vancouver, vol. 1, pp. 13–18.

    Google Scholar 

  • Kiupel, N. and P.M. Frank (1996a).“An Algorithm for a Filter Design for Fuzzy Supervision.” World Automation Congress, Montpellier, vol.1, pp. 417–422.

    Google Scholar 

  • Kiupel, N. and P.M. Frank (1996b).“Fuzzy Supervision for an Anaerobic Waste-water Plant.” IEEE Conf Computational Engineering in Systems Applications, Lille, vol.1, pp. 362–367.

    Google Scholar 

  • Klotzek, P., T. Dalton and P.M. Frank (1998).“Application of Sensitivity Theory to Fuzzy Logic Based FDI.” EC-INCO Copernicus 1Q2FD Workshop, Kazimierz Dolny, pp. 58–65.

    Google Scholar 

  • Köppen-Seliger, B. (1997).“Fehlerdiagnose mit künstlichen neuronalen Netzen,” Fortschritt-Berichte VDI, Reihe 8, Nr.632, Düsseldorf: VDI-Verlag.

    Google Scholar 

  • Marcu, T. (1996).“Pattern Recognition Techniques Using Fuzzily Labeled Data for Process Fault Diagnosis.” Journal of Applied Mathematics and Computer Science 6(4), pp. 815–840.

    MathSciNet  MATH  Google Scholar 

  • Marcu, T. and L. Mirea (1997).“Robust Detection and Isolation of Process Faults Using Neural Networks.” IEEE Control Systems, 17(5), pp. 72–79.

    Article  Google Scholar 

  • Marcu, T., L. Mirea and P.M. Frank (1999a).“Development of Dynamic Neural Networks with Application to Observer-based Fault Detection and Isolation.” Journal of Applied Mathematics and Computer Science 9(3).

    Google Scholar 

  • Marcu, T., M.H. Matcovschi and P.M. Frank (1999b).“Neural Observer-based Approach to Fault-tolerant Control of a Three-tank System.” EUCA/IFAC/IEEE European Control Conference, Karlsruhe.

    Google Scholar 

  • Mendel, J.M. (1995).“Fuzzy Logic Systems for Engineering.” Proc. IEEE 83(3), pp. 345–376.

    Article  Google Scholar 

  • Nelles, O. and M. Fischer (1996).“Local Linear Model Trees (LOLIMOT) for Nonlinear System Identification of a Cooling Blast,” European Congress on Intelligent Techniques and Soft Computing, Aachen, vol.2, pp. 1187–1191.

    Google Scholar 

  • Patton, R.J., P.M. Frank and R.N. Clark (Eds., 1989).“Fault Diagnosis in Dynamic Systems: Theory and Applications,” New Jersey: Prentice-Hall.

    Google Scholar 

  • Patton, R.J. (1994).“Robust Model-based Fault Diagnosis: The State of the Art.” IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes, Espoo, vol.1, pp. 1–24.

    Google Scholar 

  • Pedrycz, W. (Ed., 1997). “Fuzzy Evolutionary Computation,” Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  • Peltier, M.A. and B. Dubuisson (1994).“A Fuzzy Diagnosis Process to Detect Evolution of a Car Driver’ s Behavior.” IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes, Espoo, vol.2, pp. 786–801.

    Google Scholar 

  • Querelle, R. et al. (1997).“Fault Diagnosis on a Winding-machine.” IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes, Kingston upon Hull, vol.1, pp. 480–485.

    Google Scholar 

  • Quipers, B. (1986).“Qualitative Simulation.” Artificial Intelligence 29, pp. 289–338.

    Article  MathSciNet  Google Scholar 

  • Russo, M. (1998).“FuGeNeSys — A Fuzzy Genetic Neural System for Fuzzy Modeling.” IEEE Trans. Fuzzy Systems 6(3), pp. 373–388.

    Article  Google Scholar 

  • Schneider, H. and P.M. Frank (1996).“Observer-based Supervision and Fault Detection in Robots Using Nonlinear and Fuzzy Logic Residual Evaluation.” IEEE Trans. Control Systems Technology 4(3), pp. 274–282.

    Article  Google Scholar 

  • Shen, Q. and R. Leitcn (1993).“Fuzzy Qualitative Simulation.” IEEE Trans. Systems, Man, and Cybernetics 23(4), pp. 1038–1064.

    Article  Google Scholar 

  • Sorsa, T. and H.N. Koivo (1993).“Application of Artificial Neural Networks in Process Fault Diagnosis.” Automatica 29(4), pp. 843–849.

    Article  MATH  Google Scholar 

  • Takagi, T. and M. Sugeno (1985).“Fuzzy Identification of Systems and Its Application to Modeling and Control.” IEEE Trans. Systems, Man, and Cybernetics 15(1), pp. 116–132.

    Article  MATH  Google Scholar 

  • Vaidyanathan, R. and V. Venkatasubramanian (1992).“Representing and Diagnosing Process Data Using Neural Networks.” Engng. Applic. Artificial Intelligence 5(1), pp. 11–21.

    Article  Google Scholar 

  • Williams, R.J. and D. Zipser (1990).“Gradient-based Learning Algorithms for Recurrent Connectionist Networks” (Technical Report NU-CCS-90-9), Massachusetts: Northeastern University, College of Computer Science.

    Google Scholar 

  • Wünnenberg, J. (1990).“Observer-based Fault Detection in Dynamic Systems” Fortschritt-Berichte VDI, Reihe 8, Nr.222, Düsseldorf: VDI-Verlag.

    Google Scholar 

  • Zhuang, Z. and P.M. Frank (1997).“Qualitative Observer and Its Application to Fault Detection and Isolation Systems,” Proc. Instr. Mechn. Engnrs 211(I), pp. 253–262.

    Google Scholar 

  • Zimmermann, H.J. (1991).“Fuzzy Set Theory and Its Applications” Massachusetts: Kluwer Academic Publishers.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frank, P.M., Marcu, T. (2000). Diagnosis Strategies and Systems: Principles, Fuzzy and Neural Approaches. In: Teodorescu, HN., Mlynek, D., Kandel, A., Zimmermann, HJ. (eds) Intelligent Systems and Interfaces. International Series in Intelligent Technologies, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4401-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4401-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6980-6

  • Online ISBN: 978-1-4615-4401-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics