Advertisement

Interactions of Scandium and Yttrium with Molecules of Biological Interest

  • Chaim T. Horovitz
Chapter
Part of the Biochemistry of the Elements book series (BOTE, volume 13A)

Abstract

The topics of complex stability and ligand exchange are crucial to understand the functioning of metals in both chemical and biological systems. First-order rate constants of complex formation of Sc3+ and Y3+ were calculated, i.e., 5 x 107 and 1.3 x 107 k.sec-1, respectively (Hanzlik, 1976).

Keywords

Humic Acid Stability Constant Ternary Complex Biological Interest Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboul Kasim, E., and Ghandour, M. A., 1991. Stability constants of histamine complexes with Th4+, uranyl2+, La3+, Ce3+, Gd3+ and Y3+, Bull. Fac. Sci., Assiut University 20:197–201. CA 116:114477e.Google Scholar
  2. Adachi, G.-Y., and Hirashima, Y., 1990. Macrocyclic complexes of lanthanide ions, in: Cation Binding by Macrocycles. Complexation of Cationic Species by Crown Ethers (Y. Inoue and G. W. Gokel, eds.), Marcel Dekker, New York, pp. 701–741.Google Scholar
  3. Amin, S., Marks, C., Toomey, L. M., Churchill, M. R., and Morrow, J. R., 1996. Synthesis and characterization of the Y3+ and Lu3+ complexes of 1,4,7-tris(carbamoylmethyl)-1,4,7triazacyclononane (TCMT), Inorg. Chim. Acta 246:99–107.CrossRefGoogle Scholar
  4. Anderson, T. J., Neuman, M. A., and Melson, G. A., 1973. Coordination chemistry of scandium, Inorg. Chem. 12:927–930.CrossRefGoogle Scholar
  5. Ando, A., and Hisada, K., 1971. Studies on affinity of the element in group III in the periodic table for malignant tumor, Radioisot. 20:171–179 (Japanese).CrossRefGoogle Scholar
  6. Ando, A., Ando, I., Yamada, N., Hiraki, T., and Hisada, K., 1987. Distribution of 46Sc and 51Cr in tumor-bearing animals and the mechanism of accumulation in tumor and liver. Nucl. Med. Biol. 14:143–151.Google Scholar
  7. Ando, A., Ando, I., Hiraki, T., Yamada, N., and Hisada, K., 1989. Determination of the lysosomal role in tumor accumulation of 67 Ga by dual-tracer studies, Appl. Radiat. Isot. 40:521–524.CrossRefGoogle Scholar
  8. Andres, Y., MacCordick, H. J., and Hubert, J. C., 1991. Complexes of mycobactin from Mycobacterium smegmatis with scandium, yttrium and lanthanum, Biol. Metals 4:207–210.CrossRefGoogle Scholar
  9. Andronikashvili, E. L., Belokobylsky, A. I., Mosulishvili, L. M., Harabadze, N. I., and Shonya, N. I., 1976. Specific tissue binding of trace elements tissues to DNA in vivo, Dokl. Akad. Nauk SSSR, 227:1244–1246 (Russian).Google Scholar
  10. Angyal, S. J, 1972. Complexes of carbohydrates with metal cations, Aust. J. Chem. 25:1957–1966.CrossRefGoogle Scholar
  11. Angyal, S. J., 1989. Complexes of metal cations with carbohydrates in solution, Adv. Carbohydrate Chem. 47:1–43.CrossRefGoogle Scholar
  12. Angyal, S. J., 1994, personal communication, with permission.Google Scholar
  13. Angyal, S. J., and Craig, D. C., 1993. Complex formation between polyols and rare earth cations, Carbohydrate Res. 24:1–8.CrossRefGoogle Scholar
  14. Aramini, J. M., 1994, personal communication, with permission.Google Scholar
  15. Aramini, J. M., and Vogel, H. J., 1994. A 45Sc NMR study of ovotransferrin and its half-molecules, J Am. Chem. Soc. 116:1988–1993.CrossRefGoogle Scholar
  16. Aramini, J. M., Hiraoki, T., Grace, M. R., Swaddle, T. W, Chiancone, E., and Vogel, H. J., 1996. NMR and stopped-flow studies of metal ion binding to a-lactalbumins, Biochim. Biophys. Acta 1293:72–82.CrossRefGoogle Scholar
  17. Babenko, H. A., Mazeppa, I. V., Mosulishvili, L. M., Belokobylski, A. I., and Shaviashvili, N. S., 1980. Metal content in nucleic acids with experimental leukosis, Ukr. Biokhim. Zh. 52:551–555 (Russian).Google Scholar
  18. Barden, J. A., Curmi, P. M. G., and Dos Remedios, G., 1981. Crystalline actin tubes. 3. The interaction of scandium and yttrium with skeletal muscle actin, Biochim. Biophys. Acta 671:25–32.CrossRefGoogle Scholar
  19. Beck, G., 1948. The biochemistry of scandium and its removal as phytate, Mikrochem. Mikrochim. Acta 34:62–66 (German).Google Scholar
  20. Beck, G., 1949. Determination of scandium with quinalizarin and the similarity of scandium pyrophosphate to scandium phytate, Mikrochem. Mikrochim. Acta 34:282–285.CrossRefGoogle Scholar
  21. Beck, G., 1950. Precipitation reactions of aneurin-pyrophosphate with scandium and some heavy metals, Anal. Chim. Acta 4:21–22 (German).CrossRefGoogle Scholar
  22. Beck, G., 1951. The specific scandium group of the pyrophosphatic acids, Mikrochem. Mikrochim. Acta 36–37:790–792 (German).CrossRefGoogle Scholar
  23. Benes, P., Gjessing, E. T., and Steinnes, E., 1976. Interactions between humus and trace elements in fresh water, Water Res. 10:711–716.CrossRefGoogle Scholar
  24. Bergethon, P. B., and Simons, E. R., 1990. Biophysical Chemistry of Molecules to Membranes, Springer-Verlag, New York, pp. 153–170.CrossRefGoogle Scholar
  25. Bertini, I., Messori, L., and Viezzoli, M. S., 1992. Coordination compounds and life processes, Coord. Chem. Rev. 120:163–192.CrossRefGoogle Scholar
  26. Beveridge, T. J., and Koval, S. E, 1981. Binding of metals to cell envelopes, Appl. Environ. Microbiol. 42:325–335.Google Scholar
  27. Beveridge, T. J., 1989. Metal ions and bacteria, in: Metal Ions and Bacteria (T. J. Beveridge and R. J. Doyle, eds.), John Wiley and Sons, New York, pp. 1–39.Google Scholar
  28. Birnbaum, E. R., 1984. Carboxylates, in: Gmelin Handbook of Rare Elements, Springer-Verlag, Berlin, Vol. D5, pp. 1–358.Google Scholar
  29. Bimbaum, E. R., 1986. Complexes with biologically important ligands, in: Gmelin Handbook of Rare Elements, Springer-Verlag, Berlin, Vol. D4, pp. 273–302.Google Scholar
  30. Bligh, S. W. A., Choi, N., Green, D. C., Hudson, H. R., McGrath, C. M., McMartin, M., and Pianka, M., 1993. Transition metal complexes of dialkyl a-hydroxyimino phosphonates, a novel class of metal complexes, Polyhedron 12:2887–2890.CrossRefGoogle Scholar
  31. Bloomfield, V, and Carpenter, I. L., 1993. Biological polyelectrolytes, in: Polyelectrolytes (M. Hara, ed.), Marcel Dekker, New York, pp. 77–125.Google Scholar
  32. Bourdon, R., Galliot, M., and Hoffelt, J., 1983. Identification and quantification of some drugs in body fluids by metal chelate formation, in: Metal Ions in Biological Systems (H. Sigel, ed.), Marcel Dekker, New York, pp. 245–260.Google Scholar
  33. Budesinsky, B. W., and Vrzalova, D., 1966. Spectrophotometric determination of lanthanides and yttrium with diantipyrylazo, Anal. Chim. Acta 36:246–248.CrossRefGoogle Scholar
  34. Burger, K., 1990. Introduction: Biocoordination chemistry: coordination chemical interactions in biologically active systems, in: Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems (K. Burger, ed.), Ellis Horwood, New York, pp. 11–17.Google Scholar
  35. Burger, K., and Nagy, L., 1990. Metal complexes of carbohydrates and sugar-type ligands, in: Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems (K. Burger, ed.), Ellis Horwood, New York, pp. 236–283.Google Scholar
  36. Burgess, J., 1996. Man and the elements of groups 3 and 13, Chem. Soc. Rev. pp. 85–92.Google Scholar
  37. Byrne, R. H., and Lee, J. H., 1993. Comparative yttrium and REE chemistry in seawater, Marine Chem. 44:121–130.CrossRefGoogle Scholar
  38. Carugo, O., Bisi Castellani, C., and Perotti, A., 1993. Y3+ bonding to organic ligands. A comparison with the Ln3+ cations, Monatsh. Chem. 124:681–687.CrossRefGoogle Scholar
  39. Catsch, A., 1962. Principles and trends in therapeutic removal of internally deposited radionuclides, Health Phys. 8:725–730.CrossRefGoogle Scholar
  40. Catsch, A., and Schindewolf-Jordan, D., 1961. Removal of internally deposited radionuclides by triethylenetriamine-hexaacetic acid, Nature 191:715.CrossRefGoogle Scholar
  41. Chen, H.-Y., 1995. Synthesis, characterization and luminescence of lanthanides (Ce, La, Eu, Gd, Yb and Y) Schiff-base of coordination monomers, polymers and polyelectrolytes, PhD thesis, University of Massachusetts.Google Scholar
  42. Chen, Z. N., Deng, R. W, and Wu, J. G., 1992. Synthesis, characterization and antiinflamatory activity of naproxen complexes with rare earths, J. Inorg. Bioch. 47:81–87.CrossRefGoogle Scholar
  43. Cheng, K. L., Ueno, K., and Imamura, T., eds., 1982. Handbook of Organic Analytical Reagents, CRC Press, Boca Raton.Google Scholar
  44. Choppin, G. R., Rizkalla, E. N., El-Ansi, T. A., and Dadgar, A., 1994. Complexation thermodynamic of lanthanide ions by benzenepolycarboxylate ligands, J. Coord. Chem. 31:297–304.CrossRefGoogle Scholar
  45. Cleland, W. W, 1995. Kinetic method for the determination of dissociation constants of metal ionnucleotide complexes, Meth. Enzymol. 249:181–188.CrossRefGoogle Scholar
  46. Cotton, S. A., 1985. Scandium and yttrium, in: Organometallic Compounds of the Lanthanides, Actinides and Early Transition Metals (D. J. Cardin et al., eds.), Chapman and Hall, London, pp. 156–158; 275–278.Google Scholar
  47. Cotton, S. A., 1994. Scandium, yttrium and the lanthanides. Inorganic and coordination chemistry, in: Encyclopedia of Inorganic Chemistry (R. B. King, ed.), John Wiley and Sons, Chichester, Vol. 7, pp. 3595–3618.Google Scholar
  48. Daum, K. A., and Newland, L. W, 1982. Complexing effects on behavior of some metals, in: Handbook of Environmental Chemistry, Vol. 2, Part B, pp. 129–139.Google Scholar
  49. Deng, R., Wu, J., and Zhu, Y., 1991. Studies on binary and ternary complex of alanine with REE ions by pH potentiometric methods, Gaodeng Xuexiao Huaxue Xuebao, 12:853–856 (Chinese). CA 116:114470x.Google Scholar
  50. Desai, M. V. M., Mathew, E., and Ganguly, A. K., 1970. Differential interaction of humic and fulvic acids with alkaline earths and REE, Curr. Sci. 39:429–433.Google Scholar
  51. Drachevskaya, R. K., Danilova, T. V, and Veresova, R. A., 1968. Russ. J. Inorg. Chem. 11:576–578.Google Scholar
  52. Ekman, L., Valmet, E., and Aberg, B., 1961. Behavior of 91 Y and some lanthanides towards serum proteins in paper electrophoresis, density gradient electrophoresis and gel filtration, Int. J. Appl. Radioisot. 12:32–41.CrossRefGoogle Scholar
  53. Elkhilyali, A. E., Martinenko, L. I., and Spitsyn, V. I., 1967. Stability constants of a-alaninates of REE, Dokl. Akad. Nauk SSSR 176:855–857 (Russian).Google Scholar
  54. Elzawawy, E M., 1991. Complex formation constants and thermodynamic parameters for La3+ and Y3+ L-serine complexes, Monatsh. Chem. 122:921–925.CrossRefGoogle Scholar
  55. Epstein, M., Levitzki, A., and Reuben, J., 1974. Binding of lanthanides and of divalent metals ions to porcine trypsin, Biochemistry 13:1777–1782.CrossRefGoogle Scholar
  56. Evans, C. H., 1990. The interaction of lanthanides with aminoacids and proteins. Interactions of lanthanides with molecules of biological interest, in: Biochemistry of the Lanthanides, Plenum Press, New York, pp. 85–173; 173–209.Google Scholar
  57. Evans, D. E, and Jakubovic, D. A., 1988. Complexes of a water-soluble tridentate Schiff base ligand with a number of “hard” metal ions, Polyhedron 7:2723–2726.CrossRefGoogle Scholar
  58. Evans, W. J., Meadows, J. H., Kostka, A. G., and Closs, G. L., 1990. 90Y NMR spectra of organoyttrium complexes, Organometallics 4:324–326.CrossRefGoogle Scholar
  59. Fedorov, I. A., Balakaeva, T. A., and Kuchumova, A. N., 1966. Compounds of scandium with aminoacids, Russ. J. Inorg. Chem. 11:906–909.Google Scholar
  60. Felix, C. C., Hyde, J. S., Sama, T., and Sealy, R. C., 1978. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals, J. Amer. Chem. Soc. 100:1922–1926.CrossRefGoogle Scholar
  61. Ford-Hutchinson, A. W, and Perkins, D. J., 1971. The binding of scandium ions to transferrin in vivo and in vitro, Eur. J. Biochem. 21:55–59.CrossRefGoogle Scholar
  62. Forsberg, J. H., 1980. Complexes with ligands containing nitrogen and oxygen donor atoms, in: Gmelin Handbook of Rare Elements, Springer-Verlag, Berlin, Vol. Dl, pp. 103–121.Google Scholar
  63. Fujiwara, K., Kojyo, R., Okada, K., and Kodama, Y., 1990, Coprecipitation of trace metals by DNA and RNA, Anal. Chem. 62:504–508.CrossRefGoogle Scholar
  64. Ganeev, I. G., 1962. The possibility of transporting substances through complex compounds, Geokhim. 10:917–924 (Russian).Google Scholar
  65. Ganguly, A. K., Koshy, E., and Desay, M. V. M., 1970. Studies on organo-metallic interactions in the marine environment, Techn. Rep. Series IAE No 118:219–221. cited by P. Benes et al., (1976).Google Scholar
  66. Gekeler, W, Grill, E., Winnacker, E. L., and Zenk, M. H., 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins, Z. Naturforsch. 44c:361–369.Google Scholar
  67. George, A., Draganac, P., and Farkas, W. R., 1985. Depolarization of the interferon-induced 2’,5’-oligoadelynate by metal ions, Inorg. Chem. 24:3627–3631.CrossRefGoogle Scholar
  68. Germann, M. W, Aramini, J. M., and Vogel, H. J., 1994. Quadrupolar metal ion NMR study of ovotransferrin at 17.6 T., J Am. Chem. Soc. 116:6971–6972.CrossRefGoogle Scholar
  69. Gilbert, I. G. E, and Myers, N. A., 1960. Metal binding properties of chondroitin sulfate, Biochim Biophys. Acta 42:469–475.CrossRefGoogle Scholar
  70. Glasel, J. A., 1973. Lanthanide ions as NMR chemical shift probes in biological systems, Progr. Inorg. Chem. 18:383–413.CrossRefGoogle Scholar
  71. Glenworth, R, and Newton, D. A., 1971. Kinetic study of isotopic exchange reaction between yttrium ions and yttrium polyaminocarboxylic acid complex ions, J. Inorg. Nucl. Chem. 33:1701–1715.CrossRefGoogle Scholar
  72. Gopal, D., and Burke, M., 1995. Formation of stable inhibitory complexes of myosin subfragment 1 using fluoroscandium anions, J Biol. Chem. 270:19282–12286.CrossRefGoogle Scholar
  73. Gouveia, M. A., and De Carvalho, R. G., 1966. Preparation and solubility of scandium and lanthanide lactates, J. Inorg. Nucl. Chem. 28:913–914.CrossRefGoogle Scholar
  74. Hämälainen, M. M., and Lönnberg, H., 1991. Complexing of sugars and sugar alcohols with metal ions. A comparative study by ion-exchange chromatography, Carbohydr. Res. 215:357–360.CrossRefGoogle Scholar
  75. Hammersley, P. A. G., Taylor, D. M., and Path, M. R. C., 1980. The effect of the administration of iron on67 Ga citrate uptake in tumors, Brit. J. Radiol. 53:563–571.CrossRefGoogle Scholar
  76. Hanzlik, R. R, 1976. Inorganic Aspects of Biological and Organic Chemistry, Academic Press, New York.Google Scholar
  77. Harrison, L. G., 1993. Kinetic Theory of Living Matter, Cambridge University Press, New York.CrossRefGoogle Scholar
  78. Haworth, R. D., 1971. Chemical nature of humic acid, Soil Sci. 111:71–79.CrossRefGoogle Scholar
  79. Hayes, R. L., and Hübner, K. F., 1983. Basis for the clinical use of gallium and indium radionuclides, in: Metal Ions in Biological Systems (H. Sigel, ed.), Marcel Dekker, New York, pp. 279–315.Google Scholar
  80. Herring, G. M., Vaughan, J., and Wilkinson, M., 1962. Preliminary report on the localization and possible binding agent for yttrium, americium and plutonium in cortical bone, Health Phys. 8:717–724.CrossRefGoogle Scholar
  81. Hider, R. C., and Hall, A. D., 1991. Clinically useful chelators of tripositive elements, in: Progress in Medicinal Chemistry (G. P. Ellis and G. B. Est, eds.), Elsevier, Amsterdam, Vol. 28, pp. 41–173.Google Scholar
  82. Hobza, P., and Zahradnik, R., 1988. Intermolecular Complexes, Elsevier, Amsterdam.Google Scholar
  83. Hoffman, C. G., 1991. Some alkali metal and scandium porphyrin derivatives. PhD thesis, University of California at Berkeley.Google Scholar
  84. Holz, R. C., and Horrocks Jr, W. Dew., 1990. 89Y NMR spectroscopy, a new probe for calcium-binding proteins, J. Magn. Res. 89:627–631.CrossRefGoogle Scholar
  85. Huang, W, Hu, T., Weng, S., Xu, Z., Wu, J., and Xu, G., 1994. Characterization of yttrium deoxycholate complex with EXAFS and FTIR. Guangpuxue Yu Guangpu Fen 14:43–47 (Chinese). CA 122:259170j.Google Scholar
  86. Huljev, D. J., 1986. Trace metals in humic acids and their hydrolysis products, Environ. Res. 39:258–264.CrossRefGoogle Scholar
  87. Huljev, D. J., 1989. Trace metals in DNA molecules obtained from wheat germs, Radiol. lugosl. 23:313–315.Google Scholar
  88. Ioannou, P. C., 1988. A more simple, rapid and sensitive fluorimetric method for the determination of isoniazid and acetylisoniazid in serum, Clin. Chem. Acta 175:175–182.CrossRefGoogle Scholar
  89. Irwin, A. E., de Ramos, C. M., and Stout, B. E., 1996. Solution and solid state 13C NMR studies of alginic acid binding with alkaline earths, lanthanides and yttrium metal ions, ACS Symp. Ser. 651:244–258.CrossRefGoogle Scholar
  90. Itoh, H., Itoh, N., and Suzuki, Y., 1984a. Stability constants of scandium complexes. I. Monocarboxylate complexes species, Bull. Chem. Soc. Jpn. 57:716–718.CrossRefGoogle Scholar
  91. Itoh, H., Ikegami, Y., and Suzuki, Y., 1984b. Stability constants of Sc complexes. II. Dicarboxylate complexes species, Bull. Chem. Soc. Jpn. 57:3426–3429.CrossRefGoogle Scholar
  92. Itoh, H., Fujisawa, M., Ikegami, Y., and Suzuki, Y., 1985. Stability constants of rare earth citrate complex species, Lanthanide Actinide Res. 1:79–88.Google Scholar
  93. Izzat, R. M., Femelius, C., Haas, C. G., Jr., and Block, B. E, 1955. Coordination compounds. 11. Formation constants of some trivalent ions and the Th4+ ion with the acetylacetone ion, J. Phys. Chem. 59:170–174.CrossRefGoogle Scholar
  94. Kawin, B., 1957. Effect of cortisone acetate upon the distribution and excretion of radioyttrium, Nature 179:871–872.CrossRefGoogle Scholar
  95. Khole, V, and Khole, V, 1984. Element analysis of snake venoms using synchrotron radiation, Ind. J. Biochem. Biophys. 21:409–411.Google Scholar
  96. Kim, J.-A., and Kim, Y-N., 1996. Thermodynamic parameters on complexation of trivalent yttrium and lanthanide ions by L-thioproline, Bull. Korean Chem. Soc. 17:398–401.Google Scholar
  97. Komissarova, L. N., 1980. The state of scandium ions in aqueous solutions, Russ. J. Inorg. Chem. 25:75–80.Google Scholar
  98. Komissarova, L. N., and Pushkina, G. Ya., 1991. Sc complexes in chromatographic processes, Sov. J. Cord. Chem. 16:615–630.Google Scholar
  99. Komiyama, M., Matsumura, K., and Matsumoto, Y, 1992. Unprecedently fast hydrolysis of the RNA dinucleoside monophosphate ApA and UpU by rare earth metal ions. J. Chem. Soc. Chem. Commun. pp. 640–641.Google Scholar
  100. Kragten, J., 1978. Atlas of Metal-Ligand Equilibria in Aqueous Solution, Ellis Horwood Ltd, Chichester.Google Scholar
  101. Kriss, E. E., 1965. Complex formation between REE and glycine, Ukr. Khim. Zh. 31:153–158 (Russian). CA 63:1463.Google Scholar
  102. Kutek, E, and Dusek, B., 1969. Sc(III) complexes with urea, J. Inorg. Nucl. Chem. 31:1544–1547.CrossRefGoogle Scholar
  103. Kuusela, S., and Lönnberg, H., 1992. Metal ion-promoted hydrolysis of uridine 2’,3’-cyclic monophosphate. Effect of methyl chelates and uncomplexed aquo ions, J. Phys. Prg. Chem. 5:803–811.Google Scholar
  104. Kuusela, S., and Lönnberg, H., 1993. Metal ions that promote the hydrolysis of nucleoside phosphoesters do not enhance intramolecular phosphate migration, J. Phys. Org. Chem. 6:347–356.CrossRefGoogle Scholar
  105. Lee, S.-G., 1996. 89Y and 15N NMR spectroscopy of yttrium complexes of polyaminocarboxylic acids. Promising new NMR parameters, Bull. Korean Chem. Soc. 17:589–591.Google Scholar
  106. Lenkinski, R. E., 1984. Lanthanide complexes of peptides and proteins, in: Biological Magnetic Resonance (L. J. Berliner and J. Reuben, eds.), Plenum Press, New York, pp. 23–71.Google Scholar
  107. Li, H., Sadler, P. J., and Sun, H., 1996. Rationalization of the strength of metal binding to human serum transferrin, Eur. J. Biochem. 242:387–393.CrossRefGoogle Scholar
  108. Lippard, S. J., and Berg, J. M., 1994. Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, California.Google Scholar
  109. Liu, J., Weng, Q., Niu, C., and Ni, J., 1991. Study on the coordination compounds of REE with dipeptide-coordination of REE with DL-alanyl-alanine, Chinese Chem. Lett. 2:669–672. CA 116:152372z.Google Scholar
  110. Lomova, T. N., Adrianova, L. G., Sokolova, T. N., and Berezin, B. D., 1994. Kinetic stability of Sc3+ and Y3+ phthalocyanine complexes of different structure, Zh. Neorg. Khim. 39:446–449 (Russian).Google Scholar
  111. Lönnberg, H., 1990. Proton and metal ion interaction with nucleic acid bases, nucleosides, and nucleoside monophosphates, in: Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems (K. Burger, ed.), Ellis Horwood, New York, pp. 284–346.Google Scholar
  112. Makhijani, S. D., and Sangal, S. P., 1977. REE complexes of some aminoacids. A potentiometric study, J. Indian Chem. Soc. 54:670–671.Google Scholar
  113. Mantoura, R. E C., 1981. Organo-metallic interactions in natural waters, in: Marine Organic Chemistry (E. K. Duursma and R. Dawson, eds.), Elsevier Sci. Publ. Co, Amsterdam, pp. 179–223.Google Scholar
  114. Martin, R. B., and Richardson, E. S., 1979. Lanthanides as probes for calcium in biological systems, Quart. Rev. Biophys. 12:181–209.CrossRefGoogle Scholar
  115. Martynenko, L. I., 1991. Features of the complexation of trivalent rare earths, Russ. Chem. Rev. 60:1008–1022.CrossRefGoogle Scholar
  116. Matsumoto, Y., and Komiyama, M., 1992. DNA hydrolysis by rare earth metal ions, Nucleic Acids Symp. Series 27:33–34.Google Scholar
  117. Matsumura, K., and Komiyama, M., 1994. Hydrolysis of phosphatidyl inositol by rare earth metal ions as a phospholipase C mimic, J. Inorg. Biochem. 55:153–156.CrossRefGoogle Scholar
  118. Maurel, J. C., and Masse, J. P., 1991. New organic derivatives of metals with a phospholipids, use of these derivatives, process for isolating the derivatives from plants, and pharmaceutical compositions containing them, PCT patent 13892. CA 116:28114c.Google Scholar
  119. Mel’nikov, P. R, Komissarova, L. N., Melnik, E. A., and Stepanov, A. K., 1975. Complex compounds of scandium with adrenaline derivatives, Izv Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 18:703–705 (Russian).Google Scholar
  120. Melson, G. A., 1975. Organic compounds of scandium, in: Scandium. Its Occurrence, Chemistry, Physics,Metallurgy, Biology and Technology (C. T. Horovitz, ed.), Academic Press, London, pp. 323–384.CrossRefGoogle Scholar
  121. Moeller, T., 1973. The lanthanides, in: Comprehensive Inorganic Chemistry (J. C. Bailar et al., eds.), Pergamon Press, New York, Vol. 4.Google Scholar
  122. Morrison, J. F., and Cleland, W. W, 1983. Lanthanide-adenosine 5’-triphosphate complexes. Determination of their dissociation constants and mechanism of action as inhibitors of yeast hexokinase, Biochemistry 22:5507–5513.CrossRefGoogle Scholar
  123. Morrow, J. R., 1996. Hydrolytic cleavage of RNA catalyzed by metal ion complexes, in: Metal Ions in Biological Systems (A. Sigel and H. Sigel, eds.), Marcel Dekker, New York, pp. 561–592.Google Scholar
  124. Nazarenko, V. A., and Antonowich, V. R, 1969. Extraction-photometric and fluorometric determination of scandium as a morin-antipyrene complex, Zh. Anal. Khim. 24:358–361. CA 71:9397h (Russian).Google Scholar
  125. Needham, J. V, Chen, T. Y., and Falke, J. J., 1993. Novel ion specificity of a carboxylate cluster Mg2+ binding site. Charge selectivity and weak size selectivity. Biochemistry 32:3363–3367.CrossRefGoogle Scholar
  126. Neumaier, B., 1996. Radiochemical investigation of the binding of proteins and affinity of bone metastases of Y3+ complexes, Research Center Jülich, Report 3236, pp. 1–112.Google Scholar
  127. Olivard, J., 1960. Dissociation constants of Sr and Y with anions of biological significance, Arch. Biochem. Biophys. 88:382–383.CrossRefGoogle Scholar
  128. Oono, M., Morimoto, Y., and Komoritani, M., 1996. Preparation of organic carboxylic acids and catalyst systems for carbonylation of alcohols and their derivatives. Japan patent 08277244. CA 126:31079g.Google Scholar
  129. Ozer, U., 1985. Mixed ligand chelates of scandium and yttrium in organic solutions, Chim. Acta Turc. 13:253–270.Google Scholar
  130. Pakhomova, D. V., Kumok, V. N., and Serebrennikov, V. V, 1971. Glycerophosphates of the REE, Russ. J. Inorg. Chem. 16:1586–1588.Google Scholar
  131. Peacocke, A. R., and Williams, P. A., 1966. Binding of calcium, yttrium and thorium to a glycoprotein from bovine cortical bone, Nature 211:1140–1141.CrossRefGoogle Scholar
  132. Perkins, D. J., 1966. Cited by Hider and Hall (1991).Google Scholar
  133. Petersen, R. C., Jr., 1991. The contradictory biological behavior of humic substances in the aquatic environment, in: Humic Substances in the Aquatic and Terrestrial Environment (B. Allard et al., eds.), Springer-Verlag, Berlin, pp. 369–390.Google Scholar
  134. Plaha, D. S., and Rogers, H. J., 1983. Antibacterial effect of the scandium complex of enterochelin, Biochim. Biophys. Acta 760:246–255.CrossRefGoogle Scholar
  135. Plaha, D. S., Rogers, H. J., and Williams, G. W, 1984. Studies of the antibacterial effect of the scandium complex of enterochelin,.1 Antibiotics 37:588–595.CrossRefGoogle Scholar
  136. Plyushchev, V. E., Nadezhdina, G. V., Loseva, G. S., Mel’nikova, V. V, and Parfenova, T. S., 1974. Stabilities of complex compounds of REE with some a-aminoacids, J. Gen. Chem. USSR 44:2274–2275.Google Scholar
  137. Pulukkody, K. P. Norman, T. J., Parker, D., Royle, L., and Broan, C. J., 1993. Synthesis of charged and uncharged complexes of gallium and yttrium with cyclic polyazaphosphinic acid ligands for in vivo application, J Chem. Soc. Perkin Trans. 2:605–620.Google Scholar
  138. Purushottam, D., and Raghava Rao, B. S. V., 1966. β-diketones of scandium and yttrium, Indian J. Chem. 4:109–110.Google Scholar
  139. Pushkina, G. Y., and Komissarova, L. N., 1983. Scandium chelates, Sov. J. Coord. Chem. 91:1–9.Google Scholar
  140. Rabindra Reddy, P, and Sudhakar, K., 1990. Ternary complexes of cytidine and uridine. A study with bivalent and trivalent metal ions in solution, Ind. J. Chem. 29A:158–163.Google Scholar
  141. Rai, A. K., and Parashar, G. K., 1979. Synthesis and structural studies of some Sc3+ carboxylates, Synth. React. Inorg. Met. Org. Chem. 9:301–307.CrossRefGoogle Scholar
  142. Rashid, M. A., 1985. Geochemistry of Marine Humic Compounds, Springer-Verlag, New York, pp. 108–117.CrossRefGoogle Scholar
  143. Rehder, D., 1991. Groups 3–5, Scandium to tantalum, in: Transition Metal Nuclear Magnetic Resonance (P. S. Pregosin, ed.), Elsevier, Amsterdam, pp. 1–53.Google Scholar
  144. Rehder, D., and Hink, K., 1989. The interaction of Sc(OH)2+.aq with serine and small peptides investigated by 45Sc NMR spectroscopy, Inorg. Chim. Acta 158:265–271.CrossRefGoogle Scholar
  145. Rehder, D., and Speh, M., 1987. An exploratory 45Sc NMR study into the complexation of alanine and oligopeptides, Inorg. Chim. Acta 135:73–79.CrossRefGoogle Scholar
  146. Ren, J. M., Zhang, S. R., Liu, A. Z., and Pei, E. K., 1995. Effects of rare earth ions on the dynamic structure of human serum albumin. A 23Na NMR study, Bopuxue Zazshi 12:253–259 (Chinese). CA 123:77520k.Google Scholar
  147. Reuben, J., 1979. Bioinorganic chemistry. Lanthanides as probes in systems of biological interest, in: Handbook of Physics and Chemistry of Rare Earths Metals (K. A. Gschneidner and L. Eyring, eds.), North Holland Publ., Amsterdam, Vol. 4, pp. 515–552.Google Scholar
  148. Rice, S. A., and Nagasawa, M., 1961. Polyelectrolyte Solutions, Academic Press, London, pp. 427–435.Google Scholar
  149. Rogers, H. J., Synge, C., and Woods, V. E., 1980. Antibacterial effect of scandium and indium complexes of enterochelin on Klebsiella pneumoniae, Antimicrob. Agents Chemother. 18:63–68.CrossRefGoogle Scholar
  150. Rogers, H. J., Woods, V. E., and Synge, C., 1982. Antimicrobial effect of the scandium and indium complexes enterochelin on Escherichia coli, J. Gener. Microbiol. 128:2389–2394.Google Scholar
  151. Rogers, H. J., Plaha, D. S., and Woods, V. E., 1984. Antibacterial effect of the scandium complex of enterochelin on Pseudomonas aeruginosa, FEMS Microbiol. Lett. 24:5–8.CrossRefGoogle Scholar
  152. Rogozina, E. M., and Ponikarova, T. M., 1970a. Type and stability of 91Y bond in bone tissues, in: Khimicheskaya Zashchita Organizma of Ioniziruyushchikh Izluchenii, pp. 130–136 (Russian). CA 55:27492.Google Scholar
  153. Rogozina, E. M., and Ponikarova, T. M., 1970b. Complex formation of cerium and yttrium with threonine, methionine, lysine and arginine, J. Gen. Chem. USSR 40:2346–2347.Google Scholar
  154. Roque, M., Rosoff, B., Hart, H., and Williams, G., 1961. Binding of ionic and chelated REE with serum proteins and nucleic acids, Fed. Proc. 20:73.Google Scholar
  155. Rossetto, F. E., and Nieboer, E., 1994. The interaction of metal ions with synthetic DNA: Induction of conformational and structural transitions, J. Inorg. Biochem. 54:167–186.CrossRefGoogle Scholar
  156. Rosoff, B., and Spencer, H., 1975. Studies of electrophoretic binding of radioactive rare earths, Health Phys. 28:611–612.Google Scholar
  157. Rosoff, B., and Spencer, H., 1979. Binding of rare earths to serum proteins and DNA, Clin.Chim.Acta 93:311–319.CrossRefGoogle Scholar
  158. Rosoff, B., Lewin, R., Hart, H. E., Williams, G. L., and Laszlo, D., 1958. Interaction of yttrium compounds with serum and serum constituents in vitro, Arch. Biochem. Biophys. 78:1–9.CrossRefGoogle Scholar
  159. Rosoff, B., Stand, E, and Spencer, H., 1962. Rare earth binding to serum proteins and nucleic acids, Fed. Proc. 21:421.Google Scholar
  160. Ru, W D., Ji, G. W, and Zhong, N. C., 1992. Ln3+ complexes of 2-thenoyltrifluoroacetone isonicotinoyl hydrazone, Synth. React. Inorg. Meth. Org. Chem. 22:1295–1302.CrossRefGoogle Scholar
  161. Ryden, L., 1989. Metal-binding proteins, in: Protein Recognition of Immobilized Ligands, Alan Liss, New York, pp. 241–254.Google Scholar
  162. Saarinen, H., 1973. Stability constants of Sc3+ and Y3+ complexes of 2-nitroso- 1 -naphtol-4,8- disulphonic acid, Suomen Kern. 46B:333–336.Google Scholar
  163. Sabbioni, E., Pietra, R., and Marafante, E., 1982. Metal metabolism in laboratory animals and human tissues as investigated by NAA. Current status and perspectives, J. Radioanal. Chem. 69:381–400.CrossRefGoogle Scholar
  164. Sahadev, Sharma, R. K., and Sindhwani, S. K., 1992. Potentiometric studies on the complexation equilibria between some trivalent Ln metal ions and biological active 2-hydroxy- 1 -naphtaldehyde thiosemicarbazone, Monatsh. Chem. 123:883–889.CrossRefGoogle Scholar
  165. Saiki, M., Nastasi, M. J. C., and Lima, F. W, 1981. Use of tetracycline as complexing agent in radiochemical separations, J. Radioanal. Chem. 64:83–116.CrossRefGoogle Scholar
  166. Saito, K., Kido, H., and Nagasawa, A., 1990. Reactivity and reaction mechanisms of acetylacetono complexes of tervalent metal ions in solution, Coord. Chem. Rev. 100:427–452.CrossRefGoogle Scholar
  167. Sandhu, R. S., and Rakesh Kumar, 1981. Complexation reaction of metal ions with peptide systems. 14. A potentiometric study of rare earth complexes of L-leucylglycylglycine, Thermochim. Acta 47:239–241.CrossRefGoogle Scholar
  168. Sandhu, R. S., Rakesh Kumar, and Kalia, R. K., 1979. Complexation reaction of metal ions with peptide systems. 4. A potentiometric study of rare earth complexes of glycyl-L-proline, Thermochim. Acta 30:355–358.CrossRefGoogle Scholar
  169. Sandoz, A.-G., 1996. Preparation of DOTA-containing peptides and radionucleotide complexes as antitumor agents, Japan patent 08 81496. CA 125:59133y.Google Scholar
  170. Sawyer, D. T., and McCreery, R. L., 1972. Electrochemical studies of the interaction of riboflavine and its reduction products with metal ions in dimethyl sulfoxide, Inorg. Chem. 11:779–782.CrossRefGoogle Scholar
  171. Schnitzer, M., 1986. The binding of humic substances, in: Interactions of Soil Minerals with Natural Organics and Microbes (P. M. Huang and M. Schnitzer, eds.), SSSA, Madison, pp. 91–96.Google Scholar
  172. Schrauzer, G. N., 1984. The discovery of the essential trace elements, in: Biochemistry of the Essential Ultratrace Elements (E. Frieden, ed.), Plenum Press, New York, p. 27.Google Scholar
  173. Sekhon, B. S., and Chopra, S. L., 1973. A thermodynamic study of the complexation reaction for some aminoacids with Ce3+ and Y3+, Thermochim. Acta 7:151–157.CrossRefGoogle Scholar
  174. Sekhon, B. S., and Chopra, S. L., 1974. Chelate formation of riboflavine with Y3+, Lu3+ and Ce3+, Z. Naturwiss. 29c:339–342.Google Scholar
  175. Shanberg, S. M., and Choppin, G. R., 1987. Thermodynamics of Ln3+ complexation with AMP and ATP, Inorg. Chim. Acta 139:119–120.CrossRefGoogle Scholar
  176. Shestakova, T. V., Prozorovskaya, Z. N., Komissarova, L. N., and Spitzyn, V. I., 1972. Glycolates of scandium, Dokl. Akad. Nauk SSSR 204:893–896 (Russian)Google Scholar
  177. Shestakova, T. V, Prozorovskaya, Z. N., and Komissarova, L. N., 1974. Scandium (oxidolactates) oxyglycolates, Russ. J. Inorg. Chem. 19:467–469.Google Scholar
  178. Shyy, Y. J., Tsai,T. C., and Tsai, M. D., 1985. Metal-nucleotide interactions. 3. 17O, 31P and 1H NMR studies on the interaction of Sc3+, La3+ and Lu3+ with adenosine 5-triphosphate, J.Amer. Chem. Soc. 107:3478–3484.Google Scholar
  179. Sinha, S. P, 1966. Complexes of Rare Earths,Pergamon Press, New York, pp. 36–65.Google Scholar
  180. Siqueira, O. S., Melios, C. B., Ionashiro, M., de Moraes, M., and Molina, M., 1995. Complexation of some trivalent lanthanides, Sc3+ and Th4+ by benzylidenepyruvates and cinnamylidenepyruvate in aqueous solution, J. Alloys Comp. 225:267–270.CrossRefGoogle Scholar
  181. Skorik, N. A., and Artysh, A. S., 1985. The stability of the complexes of scandium, gallium, indium and with the anions of various organic acids, Russ.J Inorg. Chem. 30:1130–1132.Google Scholar
  182. Skorik, N. A., Kochmanyuk, A. S., and Voronkova, O. Yu., 1986. Lanthanum and scandium aconitates, Russ. J. Inorg. Chem. 31:646–648.Google Scholar
  183. Snyder, E. E., Buoscio, B. W, and Falke, J. J., 1990. Ca2+ site specificity. Effect of size and charge on metal ion binding to EF-hand-like site. Biochemistry 29:3937–3943.CrossRefGoogle Scholar
  184. Stepanov, A. V, 1971. Comparative stability of the complexes of yttrium and various rare earths and actinide elements with oxalate, citrate, EDTA and 1,2-diaminecyclo hexanetetra acetate, Russ. J Inorg. Chem. 16:1583–1586.Google Scholar
  185. Stern, K. G., and Steinberg, M. A., 1953. Deoxyribonucleic acids complexes of rare earths, Biochim. Biophys. Acta 11:555–558.CrossRefGoogle Scholar
  186. Sternweis, P. C., and Gilman, A. G., 1982. Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79:4888–4891.CrossRefGoogle Scholar
  187. Suhayda, C. G., and Haug, A., 1987. Metal-induced conformational changes in calmodulin, Bull. Environ. Contam. Toxicol. 38:289–294.CrossRefGoogle Scholar
  188. Summers, S. P, 1994. Synthesis and properties of some Bi3+ Mn2+,Y3+ Eu3+, and Gd3+ complexes, PhD thesis, University of Florida.Google Scholar
  189. Sun, H., Yang, Z., Wang, X., and Li, R., 1995. Study on human erythrocyte uptake of citrate complexes of rare earth elements, Beijing Yike Daxue Xuebao 27:317–318. CA 124:198845z (Chinese).Google Scholar
  190. Suresh Kumar, D., and Alexander, V, 1995. Macrocyclic complexes of lanthanides in identical ligand frameworks. 1. Synthesis of Ln3+ and Y3+ complexes of an 18-membered dioxatetraaza macrocycle, Inorg. Chim. Acta 238:63–71.CrossRefGoogle Scholar
  191. Tachenouchi, K., Watanabe, K., Kato, Y., Koike, T., and Kimura, E., 1993. Novel bifunctional macrocyclic chelating agents appended with a pendand-type carboxymethylamino ligand and nitrobenzyl group and stability of the B8Y complexes, J Org. Chem. 58:1955–1958.CrossRefGoogle Scholar
  192. Taqui Khan, M. M., and Rabindra Reddy, P. R., 1972. Mixed ligand rare earth chelates of EDTA with TPP (tripolyphosphate) and ATP, J. Inorg. Nucl. Chem. 34:967–972.CrossRefGoogle Scholar
  193. Taqui Khan, M. M., and Rabindra Reddy, P. R., 1973. Thermodynamic quantities associated with the interaction of mixed ligand rare earth chelates of EDTA with tripolyphosphate and ATP, J. Inorg. Nucl. Chem. 35:2821–2830.CrossRefGoogle Scholar
  194. Tatulian, S. A., 1993. Ionization and ion binding, in: Phospholipids Handbook (G. Cevc, ed.), Marcel Dekker, New York, pp. 511–551.Google Scholar
  195. Tewari, R. C., and Srivastava, M. N., 1973. Formation and stabilities of some rare earth metal ion chelates of 1-asparagine and 1-glutamine, J. Inorg. Nucl. Chem. 35:3044–3045.CrossRefGoogle Scholar
  196. Tselik, E. I., Beltyukova, S. V., and Kravchenko, T. B., 1995. State of fenikaberan in solution and its luminescence determination, J Inorg. Chem. 50:391–393.Google Scholar
  197. Utkhede, D., Yeh, V, Szucs, M., and Tilcock, C., 1994. Uptake of 90Y into lipid vesicles, J. Liposome Res. 4:1049–1061.CrossRefGoogle Scholar
  198. Varma, R., Vanna, R. S., Allen, W. S., and Wardi, A. H., 1974–75. Hyaluronate from aqueous humor. Some physico-chemical studies, Biochem. Experim. Biol. 11:407–417.Google Scholar
  199. Vesala, A., Lonnberg, H., Kappi, R., and Arpalahti, J., 1982. Stoichiometry of the complexes of methylglycofuranoside with metal ions in aquaeous solutions, Carbohydr. Res. 102:312–315.CrossRefGoogle Scholar
  200. Viola, R. E., Morrison, J. E, and Cleland, W. W, 1980. Interaction of metal3+ -adenosine 5’-triphosphate complexes with yeast hexokinase. Biochemistry 19:3131–3137.CrossRefGoogle Scholar
  201. Volf, V, Seidel, A., and Vladar, M., 1970. The metabolism of calcium and yttrium chelates of EDTA in the rat, Atomenergie 15:141–146.Google Scholar
  202. Voycheck, C. L., and Tan, J. S., 1993.Ion-containing polymers and their biological interactions, in: Polyelectrolytes (M. Hara, ed.), Marcel Dekker, New York, pp. 299–388.Google Scholar
  203. Wang, C., and Fu, X., 1993. Polarographic and voltametric study of the Sc3+-acid chrome blue K complex and determination of trace scandium, Anal. Lett. 26:2203–2215.CrossRefGoogle Scholar
  204. Wang, S.-J., Lin, W.-Y., Chen, M.-N., Shen, L.-H., Tsai, Z.-T., and Ting, G., 1995. Preparation and biodistribution of 90Y lipidol in rats following hepatic arterial injection, Eur. J. Nucl. Med. 22:233–236.CrossRefGoogle Scholar
  205. Wardi, A. H., Allen, W. S., and Varma, R., 1974. Spectrophotometric determination of glycosaminoglycans as their scandium complexes with xylenol orange, Anal. Chem. 46:919–920.CrossRefGoogle Scholar
  206. Welch, S., 1992. Transferrin. The Iron Carrier, CRC Press, Boca Raton, pp. 110–127.Google Scholar
  207. Williams, R. J. P., 1983. Complexation and catalysis in biology, in: Study of Enzymes (S. A. Kuby, ed.), CRC Press, Boca Raton, Vol. 2, pp. 83–103.Google Scholar
  208. Williams, R. J. P., 1985. The symbiosis of metal and protein functions, Eur. J. Biochem. 150:231–248.CrossRefGoogle Scholar
  209. Williamson, M., and Vaughan, J. M., 1967. Histochemistry of mucosaccharides in the epiphyseal plate of young rabbits, Nature 215:711–714.CrossRefGoogle Scholar
  210. Wood, S. A., 1993. The aqueous geochemistry of the rare earth elements. Critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management, Eng. Geol. 34:229–259.CrossRefGoogle Scholar
  211. Wutscher, H. K., and Perkins, R. E., 1993. Acid extractable REE in Florida citrus soils and trees, Commun. Soil Plant Anal. 24:2059–2068.CrossRefGoogle Scholar
  212. Yajima, H., Sumaoka, J., Miyama, S., and Komiyama, M., 1994. Lanthanide ions for the first non-enzymatic formation of cAMP from ATP under physiological conditions, J. Biochem. 115:1038–1039.Google Scholar
  213. Yang, K. W, Wang, L. E, Wu, J. G., and Dong, E, 1993. Synthesis, characterization and antioxidative activity of new vitamin B6 triethanolamine rare earth complexes, J Inorg. Biochemistry 52:145–150.CrossRefGoogle Scholar
  214. Yao, K.-M., and Mai, C., 1991. Studies on the acid complexes of rare earths with L-aspartic acid, Zhejiang Daxue Ziran Kexueban 25:294–301 (Chinese). CA 116:11448 lb.Google Scholar
  215. Yoshida, I., Sagara, E, and Ueno, K., 1989. Chelate stability of N-(o-hydroxybenzyl)iminodiacetic acid (HBIDA) with yttrium and lanthanoid ions, Bull. Chem. Soc. Jpn. 62:2296–2298.CrossRefGoogle Scholar
  216. Yuster, P., and Weissman, S. I., 1949. Effects of perturbation of phosphorescence. Luminescence of metal organic complexes, J. Chem. Phys. 17:1182–1189.CrossRefGoogle Scholar
  217. Zel’tser, L. E., Morozov, L. A., Talipov, S. T., and Tashkhodzaev, A. T., 1979. Luminescence reactions between scandium and some polyhydroxyflavons, Russ. J. Anal. Chem. 34:693–697.Google Scholar
  218. Zenk, M. H., 1994, personal communication, with permission.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Chaim T. Horovitz
    • 1
  1. 1.RehovotIsrael

Personalised recommendations