Advertisement

Occurrence of Scandium and Yttrium in Organisms

  • Chaim T. Horovitz
Chapter
Part of the Biochemistry of the Elements book series (BOTE, volume 13A)

Abstract

The five-kingdom system arrayed the evolutionary process of the three great levels of life: the Prokaryotae (= Monera), the eukaryotic microorganisms, and their derivatives Protoctista and the eukaryotic larger forms, i.e., Fungi, Plantae, and Animalia (Margulis and Schwartz, 1988). New concepts in studying the diversity of organisms have provided insights into the relationships that exist between Prokaryotae and Eukaryotae. The study of the body composition of various organisms refers to four main groups: water, proteins, fats, and minerals. Inasmuch as the mean composition of carbon, hydrogen, nitrogen, oxygen, and sulfur in various groups of organisms is relatively similar, the remainder of chemical elements contained in the ash residue may vary between 3–5% in Arthropoda, pisces, and seed plants, but may reach up to 24% in Coelenterata, brown algae, and marine plankton (Bowen, 1979).

Keywords

Epiphytic Lichen Rare Earth Element Yttrium Concentration Pelagic Clay Trace Element Analytical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aidid, S. B., 1988a. Determination of trace elements in leaves of tropical trees in Malaysia by NAA, J. Radioanal. Nucl. Chem. Art. 120:335–344.CrossRefGoogle Scholar
  2. Aidid, S. B., 1988b. Multi-element distribution in different plant organs, Toxicol. Environ. Chem. 18:197–203.CrossRefGoogle Scholar
  3. Andreotis, J. S., and Papadopoulou, C., 1980. A comparison of trace element content in muscle (dark and white) and liver of Auxis rochei,Ses Jour. Etude Pollut.Proc.Cagliari, pp. 313–315.Google Scholar
  4. Asubiojo, O. I., Guinn, V. P., and Okunuga, A., 1982. Multielement analysis of Nigerian chewing sticks by INAA, J. Radioanal Chem. 74:149–156.CrossRefGoogle Scholar
  5. Awadallah, R. M., Mohammed, A. E., and Gabr, S. A., 1985. Determination of trace elements in fish by INAA, J. Radioanal Nucl. Chem. Lett. 95:145–154.CrossRefGoogle Scholar
  6. Awadallah, R. M., Sherif, M. K., Amrallah, A. H., and Grass, E, 1986. Determination of trace elements of some Egyptian crops by INAA, ICP-AES and flameless AAS analysis, J. Radioanal. Nucl. Chem. Art. 98:235–246.CrossRefGoogle Scholar
  7. Beliveau, R., Gelinas, Y., Ferraris, J., and Schmit, J. E, 1990. Complete analysis of the trace elements of the kidney, Biochem. Cell Biol. 68:1272–1280.CrossRefGoogle Scholar
  8. Bergerioux, C., and Zikovsky, L., 1978. INAA of brewer’s yeast, J Radioanal. Chem. 47:173–179.CrossRefGoogle Scholar
  9. Bertine, K. K., and Goldberg, E. D., 1972. Trace elements in clams, mussels and shrimp, Limnol. Oceanogr. 17:877–884.CrossRefGoogle Scholar
  10. Bhandari, H. P. S., Lal, G., Sidhu, N. P. S., Mittal, V. K., and Sahota, H. S., 1987. Trace element analysis of hair of mentally retarded children, J. Radioanal. Nucl. Che, Lett. 119:379–385.CrossRefGoogle Scholar
  11. Bowen, H. J. M., 1979. Environmental Chemistry of the Elements, Academic Press, London.Google Scholar
  12. Brooks, R. R., 1983. Biological Methods of Prospecting for Minerals, John Wiley and Sons, New York, pp. 134–235.Google Scholar
  13. Bruno, F., Capannesi, G., Gratani, L., and Manes, F., 1980. Characterization of mineral content in Ouercus ilex leaves by photon and NAA, Giorn. Bot. Ital. 114:1175–1186.CrossRefGoogle Scholar
  14. Capannesi, G., Cecchi, A., and Cecchi-Fiordi, A., 1987. Multi-element determination in Tillandsia by INAA, J. Radioanal. Nucl. Chem. Art. 110:379–383.CrossRefGoogle Scholar
  15. Cary, E. E., Gilbert, M., Bache, C. A., Gutenman, W H., and Lisk, D. J., 1983. Elemental composition of potted vegetables and millet grown on hard coal bottom ash-amended soil, Bull. Environ. Contam. Toxicol. 31:418–423.CrossRefGoogle Scholar
  16. Chan, A. W K., Minski, M. J., and Lai, J. C. K., 1983. An application of NAA to small biochemical samples. Simultaneous determination of 30 elements in the rat brain region, J. Neurosci. Methods 7:317–328.CrossRefGoogle Scholar
  17. Chapkyavichene, E. S., Machekas, A. Yu., Taure, I. Ya., Koziova, M. B., and Pelekis, L. L., 1986. The element composition of pollen collected in Lituania, Vopr Pitanya 1:73–74 (Russian).Google Scholar
  18. Chassard-Bouchaud, C., Hubert, M., Stamptier, A., Abbe, J. C., and Galle, P, 1988. Mineral concentrations by the brittle star Ophiothrix fragilis (Echinodermata Ophiuroida) in the Bay of Seine: A study by NAA and ion microscopy, C. R. Acad. Sci. Paris 307:249–257 (French).Google Scholar
  19. Cherry, D. S., Rodgers, J. H., Jr., Graney, R. B., and Cairns, J., Jr., 1980. Dynamics and control of the Asiatic clam in the New River, Virginia, Va., Virginia Water Resources Res. Center Bull. 123, pp. 1–72.Google Scholar
  20. Cohen, D. D., and Clayton, E., 1987. A database fot thick target PIXE, Nucl. Inste. Meth. Phys. Res. 22B:59–63.CrossRefGoogle Scholar
  21. Cornelis, R., Vanoeteren, C., and Sabbioni, E., 1987. Evaluation of normal levels of major and trace elements in human lung tissue, in: Trace Element Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schramel, eds.), de Gruyter, Berlin, Vol. 4, pp. 547–556.Google Scholar
  22. Corrigan, E M., Finlayson, J. D., Stevenson, G., Ashcroft, G. W., and Ward, N. I., 1987. Aluminum, zinc and other elements in serum in senile dementia of Alzheimer’s type, Trace Elem. Med. 4:117–119.Google Scholar
  23. Corrigan, F. M., Reynolds, G. E, and Ward, N. I., 1990. Multi-element analysis of the frontal cortex, temporal cortex and basal ganglia in schizophrenia, Trace Elem. Med. 7:1–7.Google Scholar
  24. Cowgill, U. M., 1989. The chemical and mineralogical content of the plants of Lake Huleh Preserve, Israel, Phil. Trans. Roy. Soc. London, B, 326:59–118.CrossRefGoogle Scholar
  25. Cowgill, U. M., and Landenberger, B. D., 1992. The chemical composition of Astragalus. A comparison of seleniferous and non-seleniferous plants growing side by side, Bot. J. Linnean Soc. 109:223–234.CrossRefGoogle Scholar
  26. Cowgill, U. M., and Prance, G. T., 1982. Changes in the chemical composition during growth stages of Victoria amazonica (Poeppig) J. de C. Sowerby (V. regia auct.), Nymphaeaceae, Int. Rev. Ges. Hydrobiol. 67:235–244.Google Scholar
  27. Crawford, D. J., 1990. Plant Molecular Systematics. Macromolecular Approaches, John Wiley and Sons, New York, pp. 327–330.Google Scholar
  28. Crecelius, E. A., Augenfeld, J. M., Woodruff, D. L., and Anderson, J. W., 1980. Uptake of trace metals by the clam Macoma inguinata from clean and oil-contaminated detritis, Bull. Environ. Contam. Toxicol. 25:337–344.CrossRefGoogle Scholar
  29. Cushing, C. E., Jr., 1979. Trace elements in a Columbia River food web, Northwest Sci. 53:118–125.Google Scholar
  30. Cushing, C. E., Jr., and Rancitelli, L. A., 1972. Trace elements analysis of Columbia River water and phytoplankton, Northwest Sci. 46:115–121.Google Scholar
  31. Damyanova, A., and Gabrashanska, M., 1988. Mineral composition of helminths and their host tissues Fasciola hepatica L.1758 and tissues of Bos taurus, Khelminthol. 26:3–9 (Bulgarian).Google Scholar
  32. De Druin, M., 1985. Epiphytic lichens as indicators for heavy metal air pollution. What do they reflect, in: Heavy Metals in Environment, Int. Conf. Athens, Vol. 1, pp. 359–361.Google Scholar
  33. De Bruin, M., and Hackenitz, E., 1986. Trace element concentrations in epiphytic lichens and substrate bark, Environ. Pollut. 11B:153–160.Google Scholar
  34. Degens, E. T., Kempe, S., and Richey, J. E., eds., 1991. Biogeochemistry of Major World Rivers,John Wiley and Sons, Chichester.Google Scholar
  35. Djingova, R., Voulgaropoulos, A., Kuleff, I., Arpadjan, S., Sawidis, T., and Alexandrov, S., 1987. NAA and AAS analysis of Ulva lactuca and Gracilaria verrucosa from Thermaikos Gulf, Greece, Toxicol. Environ. Chem. 15:149–158.CrossRefGoogle Scholar
  36. Djuric, G. and Ajdacic, N., 1980. Determination of microelement content in the samples from the cycle of intensive poultry breeding J. Radioanal. Chem. 59:435–443.CrossRefGoogle Scholar
  37. Draskovic, R. J., Jacimovic, L. J., Stojicevic, M., Pajic, P., and Filipovic 1982. Investigations of some elements distribution in dental tissues by INAA as a function of ecological and some other parameters, J Radioanal. Chem. 70:117–132.Google Scholar
  38. Draskovic, R. J., Bozanic, V., and Bozanic, M., 1987. Statistical investigations of some element distributions in healthy and pathologically altered human colon mucosa, J. Radioanal. Nucl. Art. 116:409–445.CrossRefGoogle Scholar
  39. Duke, J. A., 1970. Ethnobotanical observations on the Choco Indians, Econ. Botany 24:344–366.CrossRefGoogle Scholar
  40. Dunn, C. E., 1990, personal communication, with permission.Google Scholar
  41. Dunn, C. E., and Hoffman, E., 1986. Multi-element study of vegetation from a zone of rare earth rich allanite and apatite in Northern Saskatchewan, Canada, Appl. Geochim. 1:375–381.CrossRefGoogle Scholar
  42. Dunn, C. E., Banville, R. M. P, and Adcock, S. W., 1989. Reconnaissance biogeochemical survey, Eastern Nova Scotia, Geol. Survey Canada, Open file 2002.CrossRefGoogle Scholar
  43. Dunn, C. B., Adcock, S. W., and Spirito, W. A., 1992a. Reconnaissance biogeochemical survey Southwestern Nova Scotia. Part 1-Red spruce bark, Geological Survey of Canada, Open file 2556.CrossRefGoogle Scholar
  44. Dunn, C. E., Adcock, S. W., and Spirito, W. A., 1992b. Reconnaissance biogeochemical survey Southeastern Cape Breton Island, Nova Scotia Part 1-Black spruce bark, Geological Survey of Canada, Open file 2558.Google Scholar
  45. Durrant, S. F., and Ward, N. I., 1989. Multi-elemental analysis of human milk by ICP-MS, J. Micronutr. Anal. 5:111–126.Google Scholar
  46. Ebens, R. J., and Shacklette, H. T., 1982. Geochemistry of some rocks, mine spoils, stream sediments, soils, plants and waters in the Western Energy Region of the conterminous United States. US Department of the Interior. US Government Printing Office, Washington, Geological Survey Professional Paper 1237. Google Scholar
  47. Economou, A., Andreotis, J. S., and Papadopoulou, C., 1985. Determination of trace elements in the medusae Aurelia aurita and Pelagia noctiluca from Saronicos Gulf, by INAA, Rapp. Comm. Int. Her. Medic 29:139–141.Google Scholar
  48. Ehmann, W. D., Markesberry, W. R., Kasarkis, E. J., Vance, D. B., Khare, S. S., Hord, J. D., and Thompson, C. M., 1987. Application of NAA to the study of age-related neurological diseases, Biol. Trace Elem. Res. 13:19–33.CrossRefGoogle Scholar
  49. Ehmann, W. D., Ding, S. S., Lovell, M. A., Ni, B. E, Tandon, L., Vance, D. B., and Wenstrup, D. E., 1993. NAA in a multi-technique study of trace element imbalances in age related neurological diseases, J. Radioanal. Nucl. Chem. Art. 168:223–231.CrossRefGoogle Scholar
  50. Eisler, R., 1981. Trace Metal Concentrations in Marine Organisms, Pergamon Press, New York, pp. 260–261, 420–465.Google Scholar
  51. Elnimr, T., Sharshar, T., Badar, M. R., Shaker, A., Gobran, E, and Ela-Assaly, E M., 1987. Determination of trace elements concentrations in human hair of some glass factory workers by the K0 method, Arab. J Sci. Eng. 12:93–97.Google Scholar
  52. Evans, C. H., 1990. The occurrence and metabolism of the lanthanides in: Biochemistry of the Lanthanides, Plenum Press, New York, pp. 285–293.Google Scholar
  53. Fatima, I., Waheed, S., Mannan, A., and Qureshi, I. H., 1985. Distribution of toxic and essential elements in various chicken organs, Toxicol. Chem. 10:321–332.CrossRefGoogle Scholar
  54. Fawcett, E, Green, D., and Shaw, G., 1971. Application of neutron activation analysis to the determination of trace elements in pollen and sporopollenins, J. Radioanal. Chem. 13:313–318.CrossRefGoogle Scholar
  55. Forbes, G. B., 1987. Human Body Composition, Growth, Aging, Nutrition and Activity, Springer-Verlag, New York.CrossRefGoogle Scholar
  56. Forssen, A., 1974. Inorganic elements in the human body. Yttrium in the body of different individuals, Ann. Acad. Sci. Fenn. A 163:1–4.Google Scholar
  57. Fowler, S. W, 1977. Trace elements in zooplankton particulate matter, Nature 269:51–53.CrossRefGoogle Scholar
  58. Fowler, S. W, 1986. Trace metal monitoring of pelagic organisms from the open Mediterranean Sea, Environ. Monit. Assess. 7:59–78.CrossRefGoogle Scholar
  59. Fowler, S. W, Papadopoulou, C., and Zafiropoulos, D., 1985. Trace elements in selected species of zooplankton and nekton from the open Mediterranean Sea, in: Heavy Metals in the Environment (T. D. Lekkas, ed.), CEP Consultants, Edinburgh, pp. 670–672.Google Scholar
  60. Fujiwara, K., Kojyo, R., Okada, K., and Kodama, Y., 1990. Coprecipitation of trace metals by DNA an RNA molecules, Anal. Chem. 62:504–508.CrossRefGoogle Scholar
  61. Gabrashanska, M., Kanev, I., and Damyanova, A., 1989. Mineral composition of four parasite species of class Trematoda and their fresh-water snail-hosts, in: International Trace Elements Symposium, Proc., 6th, Leipzig, Vol. 2, pp. 440–446.Google Scholar
  62. Gabrashanska, M., Baycheva, O., and Damyanova, A., 1990. Mineral composition of helminths and of tissues of their hosts. 2. Ditylenchus dipsaci Kuehn, 1857) Filipjev, 1936 and tissues of Allium cepa, Khelminthol. 28:3–8 (Bulgarian).Google Scholar
  63. Gavrilas, M., and Munno, F. J., 1984. Elemental composition of Chesapeake Bay oyster Crassostrea virginica in the vicinity of Calvert Cliffs Nuclear power plant, in: Nuclear Methods in Environmental Energy Research (J. R. Vogt, ed.), Proc. 5th Internat. Conf., Mayguez, Puerto Rico 1984, pp. 1–4.Google Scholar
  64. Gawlik, D., Behne, D., Brätter, P., Gatschke, W, Gessner, H., and Kraft, D., 1982. The suitability of the iliac crest biopsy in the element analysis of bone and marrow, J. Clin. Chem. Clin. Biochem. 20:499–507.Google Scholar
  65. Gooddy, W, Burrows, E. H., Thompson, J., Ward, N. I. and Williams, T. R., 1992. Multi-element relationships and analysis of cerebrospinal fluid in unsolved problems of human diseases, Trace Elem. Med. 9:1–6.Google Scholar
  66. Goodfellow, M., and O’Donnell, A. G., 1993. Roots of bacterial systematics, In: Handbook of New Bacterial Systematics (M. Goodfellow and A. G. O’Donnel, eds.), Academic Press, London, pp. 3–48.Google Scholar
  67. Gorchakovsky, P. L., and Nikonova, N. N., 1971. The principles governing the accumulation of rare elements by certain higher plants and their significance for the prospecting for ore deposits, in: Theoretical Problems of Phytoindication, Nauka, Leningrad, pp. 173–179 (Russian).Google Scholar
  68. Gulati, N., and Mangal, P. C., 1985. Trace element profiles in skin-tumor and tissues of tumor-bearing mice, Ind. J. Cancer 22:308–314.Google Scholar
  69. Hamilton, E. I., 1987. The periodic table of the elements. Geochemical and biochemical associations, in: Pollutant Transport and Fate in Ecosystems (P.J. Coughtrey et al., eds.), Blackwell Scientific Publishers, Oxford, pp 5–33.Google Scholar
  70. Harada, T., Qishi, K., and Koyama, M., 1983. Radioactivation analysis of calcareous algae and Laminariales, and the regularity of distribution of elements in the organisms from bacteria to mammals, Bull. Japan Soc. Sci. Fish. 49:1135–1141 (Japanese).CrossRefGoogle Scholar
  71. Haskin, L. A., Frey, F. A., Schmitt, R. A., and Schmith, R. H., 1966. Meteoritic, solar and terrestrial rare earths distribution, J. Environ. Quality 7:167–171.Google Scholar
  72. Helmke, P. A., Robarge, W E, Korotev, R. L., and Schlomberg, P. J., 1979. Effects of soil-applied sewage sludge on concentrations of elements in earthworms, J. Environ. Quality 8:322–327.CrossRefGoogle Scholar
  73. Horovitz, C. T., and Shlosberg, A., 1989. Occurrence of scandium in the animal kingdom and its relationships with other trace elements, Trace Elements, Int. Symp., 6th, Leipzig, Vol. 4, pp. 1329–1335.Google Scholar
  74. Horovitz, C. T., Schock, H. H., and Horovitz-Kisimova, L, 1974. The content of scandium, thorium, silver and other trace elements in different plant species, Plant Soil 40:397–403.CrossRefGoogle Scholar
  75. Howard, L. S., and Brown, B. E., 1986. Metals in tissues and skeleton of Fungia fungites from Phuket, Thailand, Mar. Pollut. Bull. 17:569–570.CrossRefGoogle Scholar
  76. Huljev, D. J., 1982. NAA of some North Adriatic organisms, J. Radioanal. Chem. 74:249–251.CrossRefGoogle Scholar
  77. Huneck, S., Bothe, H. K., and Richter, W, 1990. On the metal content of lichens from copper schist dumps of the surroundings of Mansfeld, Herzogia 8:295–304 (German).Google Scholar
  78. Ichihashi, H., Morita, H., and Tatsukawa, R., 1992. REE in naturally grown plants in relation to their variation in soils, Environ. Pol. 76:157–162.CrossRefGoogle Scholar
  79. Ila, P., 1988. Multielement analysis of lichens by INAA, J. Radioanal. Nucl. Chem. Art. 120:247–252.CrossRefGoogle Scholar
  80. Ila, P., and Jagam, P., 1980. Multi-element analysis of food spices by INAA, J. Radioanal. Chem. 57:205–210.CrossRefGoogle Scholar
  81. Ince, A. J., 1976. Some elements and their relationships in Ascaris suum, Internat. J. Parasitol. 6:127–128.CrossRefGoogle Scholar
  82. Iqbal, M. Z., and Qadir, M. A., 1990. Determination of bromine, rubidium, cesium, and sodium in various plant leaves located in an urban park by NAA, J. Radioanal. Nucl. Chem. Lett. 145:189–195.CrossRefGoogle Scholar
  83. Ishikawa, M., and Nakamura, K., 1990. Trace elements in tissues and organs of an Antarctic icefish, Champsocephalus gunnari, Nucl. Instrum. Methods Phys. Res. B49:220–224.Google Scholar
  84. Iyengar, G. V, Koilmer, W. E., and Bowen, H. J. M., 1978. The Elemental Composition of Human Tissues and Body Fluids. Verlag Chemie, Weinheim.Google Scholar
  85. Jempson, J. R., and Pillay, K. K. S., 1980. Trace element profile of a California redwood tree, Trans. Am. Nucl. Soc. 134:111–112.Google Scholar
  86. Jeran, Z., Jacimov, R., Batic, F., Smodis, B., and Wolterbeck, H. T., 1996. Atmospheric heavy metal pollution in Slovenia derived from results tor epiphytic lichens, Fresenius J. Anal. Chem. 345:681–687.Google Scholar
  87. John, W, 1983. Relationship between trace element concentrations in human blood and atmospheric aerosol, Sci. Total Environ. 27:21–32.CrossRefGoogle Scholar
  88. Kabata-Pendias, A., and Pendias, H., 1992. Trace Elements in Soils and Plants, CRC Press, Boca Raton.Google Scholar
  89. Kamijou, M., Fujii, T., Suzuki, T., Kawai, K., and Murase, H., 1996. Isolation of rare earth element by bacterial accumulation, Kidorui 28:48–49. CA 126:57263n.Google Scholar
  90. Kanias, G. D., and Kouri, E., 1996. Biological evaluation of trace element data in human ovaries by statistical analysis, Biol. Trace Elem. Res. 52:65–116.CrossRefGoogle Scholar
  91. Kanias, G. D., Skaltsa, H., Tsitsa, E., Loukis, A., and Bitis, J., 1992. Study of the correlation between trace elements, sterols and fatty acids in brown algae from the Saronikos Gulf of Greece, Fresenius J. Anal. Chem. 344:334–339.CrossRefGoogle Scholar
  92. Katayama, Y., Okada, N., Ishimaru, Y., Nobuchi, T., Yamashita, H., and Aoki, A., 1986. Determination of trace elements in annual rings of yaku sugi by thermal NAA, Radioisot. 35:577–582 (Japanese).CrossRefGoogle Scholar
  93. Kawashima, T., 1983. NAA of a few flowers of Liliiflorae plants, J Chem. Soc. Japan 12:1814–1817 (Japanese).Google Scholar
  94. Kawashima, T., Yamamoto, T., and Koda, Y., 1983. NAA of Japanese seaweeds, J. Chem. Soc. Japan 3:368–379 (Japanese).Google Scholar
  95. Khare, S. S., Ehmann, W. D., Kasarkis, E. J., and Markesbery, W. R., 1990. Trace elements imbalances in amylotrophic lateral sclerosis, NeuroToxicol. 11:521–532.Google Scholar
  96. King, H. D., Curtin, G. C., and Shacklette, H. T, 1984. Metal uptake by young conifer trees, US Geol. Surv. Bull 1617, pp. 1–23.Google Scholar
  97. Klusek, C. S., Heit, M., and Hodgkiss, S., 1993. TE concentrations in the soft tissue of transplanted freshwater mussels near a coal-fired power plant in: Trace Elements in Coal and Coal Combustion Residues(R. E Keefer et al., eds.)Lewis Publishers, Boca Raton, pp. 59–95.Google Scholar
  98. Knauss, K., and Ku, T.-L, 1983. The elemental composition and decay series radionuclide content of plankton from East Pacific, Chem. Geol. 39:125–145.CrossRefGoogle Scholar
  99. Kovacs, M., 1982. Chemical composition of the lesser reedmace (Typha angustifolia L.) in Lake Balaton, Acta Bot. Acad. Sci. Hung. 28:297–307.Google Scholar
  100. Kovacs, H., Opauszky, I., Podani, J., Klincsek, P., and Dinka, M., 1981. The element content of the leaves of tree and shrubs species in the city, Bot. Kozi. 68:95–107 (Hungarian).Google Scholar
  101. Kovacs, M., Nyary, I., and Toth, L., 1984. The microelement content of some submerged and floating aquatic plants, Acta Bot. Hung. 30:173–185.Google Scholar
  102. Koyama, M., Shirakawa, M., Takada, J., Katayama, Y., and Matsubara, T., 1987. TE in land plants. Concentration ranges and accumulation of rare earth elements, barium, radium, manganese, iron, cobalt and heavy halogens, J. Radioanal. Nucl. Chem. Art. 112:489–506.CrossRefGoogle Scholar
  103. Kvicala, J., and Havelka, J., 1988a. Frequency of concentrations of some trace elements in serum by INAA, J. Radioanal. Nucl. Chem. Art. 121:261–270.CrossRefGoogle Scholar
  104. Kvicala, J., and Havelka, J., 1988b. Frequency of concentrations of some trace elements in scalp hair by INAA, J. Radioanal. Nucl. Chem. Art. 121:271–277.CrossRefGoogle Scholar
  105. Kvicala, J., Zamrazil, V, and Cermak, S., 1994. Levels of some TE in serum of Prague inhabitants measured by INAA, Biol. Trace Elem. Res. 43–44:497–502.Google Scholar
  106. Laul, J. C., Weimer, W. C., and Rancitelli, L. A., 1979. Biogeochemical distribution of rare earths and other trace elements in plants and soils, in: Origin and Distribution of the Elements (L. H. Ahrens, ed.), Pergamon Press, Oxford, pp. 819–827.Google Scholar
  107. Li, Y.-H., 1984. Why are the chemical compositions of living organisms so similar? Schweiz. Z. Hydrol. 46:177–184.Google Scholar
  108. Limae Cunha, M. C., Formoso, M. L. L., and Pereira, V. P., 1995. Mobility of residual elements from the biogeochemical viewpoint in the alkaline complex of Catalao I, Goias, Brazil, Geochim. Bras. 9:1311–140. CA 126:92286u.Google Scholar
  109. Lin, S. M., Tseng, C. L., and Yang, M. H., 1987. Determination of major, minor and trace elements in urinary stones by NAA, Appl. Radial. ‘sot. 38:635–639.Google Scholar
  110. Liu, Y.-G., Trione, E. J., Laul, J. C., and Schmitt, R. A., 1982. INAA of wheat bunt spores, J. Radioanal. Chem. 69:427–439.CrossRefGoogle Scholar
  111. Lobel, P. B., Belkhode, S. P., Jackson, S. E., and Longerich, H. P., 1990. Recent taxonomic discoveries concerning the mussel. Mytilus, Arch. Environ. Contam. toxicol. 19:508–512.CrossRefGoogle Scholar
  112. Lobel, P. B., Longerich, H. P., Jackson, S. E., and Belkhode, S. P., 1991. A major factor contributing to the high degree of unexplained variability of some elements concentrations in biological tissue, Arch. Environ. Contam. Toxicol. 21:118–125.CrossRefGoogle Scholar
  113. Lounama, J., 1956. Trace elements in plants growing wild on different rocks in Finland, Ann. Bot. Soc. Zool. Bot. Fenn Vanamo 29:1–196.Google Scholar
  114. Maenhaut, W, De Reu, L., Tomza, V, and Versieck, J., 1982. The determination of TE in commercial human serum albumin solutions by proton-induced x-ray emission spectrometry and NAA, Anal. Chim. Acta 136:301–309.CrossRefGoogle Scholar
  115. Malzahn, E., 1983. TE and their significance in the postnatal development of seasonal generations of the bankvole, Acta Theriol. 26:231–256.Google Scholar
  116. Mangal, P. C., and Kaur, I. P., 1983. Trace elements analysis of mouse tissue with NAA technique without chemical separation, Proc. Ind. Natl. Sci. Acad. 49B:327–331.Google Scholar
  117. Mangal, P. C., and Kumar, S., 1984. NAA of trace elements in cancerous human breast tissue, Ind. J. Phys. 58A:355–360.Google Scholar
  118. Mangal, P. C., and Sharma, P., 1981. Effect of leukaemia on the concentration of some trace elements in human whole blood, Ind. J. Med. Res. 74:559–564.Google Scholar
  119. Mann, H, 1991, personal communication, with permission.Google Scholar
  120. Mann, H, Fyfe, W. S., and Kerrich, R., 1988. The algae and waters: Bio-concentration, Toxicol. Assess. 3:1–16.CrossRefGoogle Scholar
  121. Mann, H., Fyfe, W. S., and Kerrich, R., 1991. Biological accumulation of different chemical elements by microorganisms from Yellowstone National Park, USA, in: Mechanisms and Phylogeny of Mineralization in Biological Systems (S. Suga and H. Nakahara, eds.), Springer-Verlag, Tokyo, pp. 357–362.CrossRefGoogle Scholar
  122. Margulis, L., and Schwartz, K. V., 1988. Five Kingdoms. An Illustrated Guide to the Phyla of Life on the Earth, Freeman, New York.Google Scholar
  123. Markert, B., 1988. Interelement correlations in different reference materials, Fresenius J. Anal. Chem. 332:630–635CrossRefGoogle Scholar
  124. Markert, B., 1992. Presence and significance of naturally occurring chemical elements of the periodic system in the plant organisms and consequences for future investigations on inorganic environmental chemistry in ecosystems, Vegetation 103:1–30.Google Scholar
  125. Markert, B., 1993. Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples, Fresenius J. Anal. Chem. 345:318–322.CrossRefGoogle Scholar
  126. Markert, B., 1994. The biological system of the elements for terrestrial plants. Sci Total. Environ. 155:221–228.CrossRefGoogle Scholar
  127. Markert, B., and Wtorova, W, 1992. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR, Vegetation 98:44–58.CrossRefGoogle Scholar
  128. Markesbery, W. R., Ehmann, W. D., Alauddin, M., and Hossain, T. I. M., 1984. Brain trace elements concentrations in aging, Neurobiol. Aging 5:19–28.CrossRefGoogle Scholar
  129. Martic, M., Ajdacic, N., Stejepcevic, J., and Gasic, M. J., 1980. Determination of TE in marine organisms by NAA J. Radioanal. Chem. 59:445–451.CrossRefGoogle Scholar
  130. Masuzawa, T., Koyama, M., and Terazaki, M., 1988a. A regularity in trace element contents of marine zooplankton species, Marine Biol. 97:587–591.CrossRefGoogle Scholar
  131. Masuzawa, T., Handa, N., and Koyama, M., 1988b. Trace elements of Calyptogena soyoae from a giant clam colony of Matsushima Island, Sagami Bay, Japan, JAMSTCR Deepsea Res. pp. 225–232 (Japanese).Google Scholar
  132. Mauchline, J., and Templeton, W. L., 1964. A review of the biological significance of certain neutron induced radioisotopes in the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 2:229–235.Google Scholar
  133. Merlini, M., Girardi, E, and Pozzi, G., 1967. Concentrations of trace elements in sea fish, in: Nuclear Activation Techniques in the Life Sciences, IAEA, Vienna, pp. 615–627.Google Scholar
  134. Meyer-Sabellek, W, Gawlik, D., and Gross, U., 1985. Trace elements in bone. NAA of iliac crest biopsies, in: Current Advances in Skeletogenesis (A. Omoy et al., ed.), pp. 344–351.Google Scholar
  135. Michel, R., Hoffmann, and Zilkens, J., 1980. TE behavior of human and mammalian tissues during excessive supply of metals, in: Trace Element Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schramel, eds.), de Gruyter, Berlin, pp. 137–157.Google Scholar
  136. Minnikkinen, P., Yliruokanen, I., and Särkkä, J., 1988. Environmental effect on the minor and trace elements patterns of some aquatic plants, Analysis 16:169–172.Google Scholar
  137. Minoia, C., Sabbioni, E., Apostol, P., Pietra, R., Pozzoli, L., Gallorini, M., and Nicolaou, G., 1990. Trace element reference values in tissues from inhabitants of the European community. 1. A study of 46 elements in urine, blood and serum of Italian subjects, Sci. Total Environ. 95:89–105.CrossRefGoogle Scholar
  138. Moauro, A., Triolo, L., Avino, P., and Ferrandi, L., 1992. Evaluation of trace and minor elements in agricultural products from Italian farms by INAA, 8th Int. Coll. Optimization of Plant Nutrition, Lisbon, pp. 1–9.Google Scholar
  139. Molokhia, A., Dyer, A., and Portnoy, B., 1981. Simultaneous determination of eight trace elements in human skin by INAA, Analyst 106:1168–1173.CrossRefGoogle Scholar
  140. Molokhia, M., and Molokhia, A., 1990. Regional variation of eight trace elements in normal human liver, in: Trace Elements in Clinical Medicine (H. Tomita, ed.), Springer-Verlag, Tokyo, pp. 85–88.CrossRefGoogle Scholar
  141. Momoshima, N., Sugihara, S., Nakayama, Y., and Takashima, Y., 1984. Genetic relationship among seaweeds from the viewpoint of trace elements, Mem. Fac. Sci. Kyushu Univ. 14C:277–284.Google Scholar
  142. Mosulishvili, L. M., Shonia, N. I., Ginturi, E. N., Efremova, E. Yu., and Kharabadze, N. E., 1985. INNA results for metal traces in human whole blood. Frequency and age characteristics of the distribution, J. Radioanal. Nucl. Chem. Art. 88:121–134.CrossRefGoogle Scholar
  143. Nadkarni, R. A., and Chaphekar, S. B., 1977. A plant species of suspected accumulator behavior, Experientia 33:34–35.CrossRefGoogle Scholar
  144. Naidenov, M. B., and Raikov, L. E, 1980. NAA of plant materials, Dokl. Bolg. Akad. Nauk 33:273–276.Google Scholar
  145. Ndiokwere, C. L., 1983. Arsenic, antimony, gold and mercury levels in the soft tissues of interdial and terrestrial mollusks and TE composition of their shells, Radioisot. 32:117–120.CrossRefGoogle Scholar
  146. Nicolaou, G., Pietra, R., Sabbioni, E., Mosconi, G., Cassina, G., and Seghizzi, P., 1987. Multielement determination of metals in biological specimens of hard metal workers. A study correlation analysis by NAA, J. Trace Elem. Electrolytes Health Dis. 1:73–77.Google Scholar
  147. Obrusnik, I., and Paukert, J., 1984. Indication of environmental pollution by means of INAA of the hair of some free living mammals, J Radioanal. Nucl. Chem. Lett. 83:397–406.CrossRefGoogle Scholar
  148. Ohmori, S., and Hashimoto, K., 1985. NAA of trace metals in the hair and organs of small animals treated chronically with mercury and manganese, J Radioanal. Nucl. Chem. 89:277–285.CrossRefGoogle Scholar
  149. Okamoto, K., ed., 1980. Preparation, analysis and certification of pepperbush standard reference material, Research Report NIES Nr.18, Ibaraki, pp. 1–102.Google Scholar
  150. Oluwole, A. E, Ojo, J. O., Durosinmi, M. A., Asubiojo, O. I., Akanle, O. A., Spyrou, N. M., and Filby, R. H., 1994. Elemental composition of head hair and fingernails of some Nigerian subjects, Biol. Trace Elem. Res. 43–45:443–452.CrossRefGoogle Scholar
  151. Ordögh, M., Fazekas, S., and Szabo, E., 1985. The regional distribution of copper and other TE in the human brain with special reference to Wilson’s disease in: Metal Ions in Neurology and Psychiatry (S. Gabay et al., eds.), A. Liss, New York, pp. 129–137.Google Scholar
  152. Pan, T. C., Lin, T. H., Tseng, C. L., Yang, M. H., and Huang, C. W., 1993. Trace elements in man of blackfoot disease, Biol. Trace Elem. Res. 39:117–126.CrossRefGoogle Scholar
  153. Papadopoulou, C., and Kanias, G. D., 1977. Tunicate species as marine pollution indicators, Marine Pollut. Bull. 9:1–3.Google Scholar
  154. Papadopoulou, C., Kanias, G. D., and Moraitopoulou-Kassimati, E., 1976. Stable elements of radioecological importance in certain Echinoderm species, Marine Poll. Bull. 7:143–144.CrossRefGoogle Scholar
  155. Parker, S. P., ed., 1982. Synopsis and Classification of Living Organisms. McGraw-Hill Book Co, New York, Vols. 1 and 2.Google Scholar
  156. Passwater, R. A., and Cranton, E. M., 1983. Trace Elements, Hair Analysis and Nutrition, Keats Publishing, New Canaan.Google Scholar
  157. Paukert, J. and Obrusnik, I., 1986. The hair of the common hare (Lepus europaeus Pall.) and the common vole (Microtus arvalis Pall.) as indicator of the environmental pollution, J. Hyg. Epidemiol. Immunol. 30:27–32.Google Scholar
  158. Peterson, P. J., 1971. Unusual accumulations of elements by plants and animals, Sci. Progr. (Oxford) 59:505–526.Google Scholar
  159. Phelps, D. K., 1966. Partitioning of the stable elements iron, zinc, scandium, and samarium within a benthic community, Anasco Bay, Puerto Rico, in: Radioecological Concentration Processes (B. Aberg and F. K. Hungate, eds.), Pergamon Press, Oxford, pp. 721–734.Google Scholar
  160. Pilegaard, K., 1985. Biological monitoring of airborne deposition around exposed mineralizations in Greenland, in: Health, Metals and Environment, Internat. Conf., Athens, Vol. 1, pp. 518–520.Google Scholar
  161. Popov, A. I., 1993. Mineral composition of leaves of Taraxacum officinale, Voprosy Pitaniya 3:57–58 (Russian).Google Scholar
  162. Prasad, E. A. V, Naga Raju, A., Sankarana, G., and Raghu, V, 1989. Significance of the aquatic mosses in biogeochemistry, Current Sci. 58:225–227.Google Scholar
  163. Precsenyi, I., and Opauszky, I., 1979. Micro and ultramicroelement concentrations in some sand grassland plants. Bot. Közlem. 66:29–32 (Hungarian).Google Scholar
  164. Puckett, K. J., and Finegan, E. J., 1980. An analysis of the element content of lichens from the Northwest Territories,Canada, Can. J. Bot. 58:2073–2089.CrossRefGoogle Scholar
  165. Rehwoldt, R., Karimian-Teherani, D., and Altmann, H., 1976. Distribution of selected metals in tissue samples of carp Cyprinus carpio, Bull. Environ. Contam. Toxicol. 15:374–377.CrossRefGoogle Scholar
  166. Risch, M. A., Askarow, K. A., Orestova, J. I., and Kist, A. A., 1985. Macro-and trace elements metabolism in silkworm, in: Mengen and Spurenelemente (M. Anke, ed.), Proc. Symp. Leipzig, pp. 61–68 (German).Google Scholar
  167. Robbins, C. R., 1994. Chemical and Physical Behavior of Human Hair, Springer-Verlag, Berlin, pp. 84–88.Google Scholar
  168. Robertson, D. E., Rancitelli, L. A., and Perkins, R. W, 1968. in: Applications of NAA in Oceanography, International Symposium Brussel, Proc., BNWL-SA-1776.Google Scholar
  169. Robinson, W. O., Bastron, H., and Murata, K. J., 1958.Biogeochemistry at the REE with particular reference to hickory trees, Geochim Cosmochim. Acta 14:55–67.CrossRefGoogle Scholar
  170. Roelandts, I., and Monty, C. L. V, 1987. Rare-earth elements in recent calcareous benthic organisms, J. Radioanal. Nucl. Chem. Art. 112:531–543.CrossRefGoogle Scholar
  171. Roesijadi, G., and Crecelius, E. A., 1984. Elemental composition of the hydrothermal vent clam Calyptogena magnifica from the East Pacific Rise, Marine Biol. 83:155–161.CrossRefGoogle Scholar
  172. Romankevich, E. A., 1988. Biogeochemical aspects of the earth’s living matter, Geochem. Int. 25:123–136.Google Scholar
  173. Romankevich, E. A., 1990. Biogeochemical problems of living matter of the present-day biosphere, in: Facets of Modern Biogeochemistry (V. Ittenkkot et al., eds.), Springer-Verlag, London, pp. 39–51.CrossRefGoogle Scholar
  174. Romney, E. M., Steen, A. J., Wood, R. A., and Rhoads, W. A., 1966, in: Radiological Concentration Processes, International Symposium Stockholm, Proc., pp. 391–398.Google Scholar
  175. Ronneau, C., and Cara, J., 1984. Correlations of element deposition on pastures with analysis of cows hair, Sci. Total Environ. 39:135–142.CrossRefGoogle Scholar
  176. Ronneau, C., Detry, M., Lardinois, E, and Hallet, J. E, 1983. Transfer of heavy elements towards the human food-chain via elemental deposition on pastures, in: Heavy Metals in Environment. Int. Cont. 4th, Vol. 2, pp. 757–759.Google Scholar
  177. Roth-Holzapfel, M., 1989. Multi-element analysis of invertebrate animals in forest ecosystem, in: Element Concentration Cadasters in Ecosystems (H. Lieth and B. Marken, eds.), VCH, Weinheim, pp. 281–295.Google Scholar
  178. Ryabtzeva, K. M., 1968. Geochemical particularities of the vegetation of the high latitude of the Hibini Mountains, in: Voprosy Geokhimyi i Geologyi (Z. A. Makeeva, ed.), Moscow, pp. 20–29 (Russian).Google Scholar
  179. Samudralwar, D. L., and Garg, A. N., 1986. INAA of human and animal whole blood samples by short term reactor irradiation,/. Radioanal. Nucl. Chem. Lett. 1:95–109.Google Scholar
  180. Samudralwar, D. L., Wankhade, H. K. and Garg, A. N., 1987. Multielemental analysis of IAEA intercomparison standard hay powder, V-10 and some edible plant leaves by neutron activation, J. Radioanal Nucl. Chem. 116:307–315.CrossRefGoogle Scholar
  181. Sansoni, B., 1987. Multi-element analysis for environmental characterization, Pure Appl. Chem. 59:579–610.CrossRefGoogle Scholar
  182. Santelmann, M. V, and Gorham, E., 1988. The influence of airborne road dust on the chemistry of Sphagnum mosses, J. Ecol. 76:1219–1231.CrossRefGoogle Scholar
  183. Satake, K., and Nishikawa, M., 1990. Accumulation of scandium in the shoots of aquatic bryophytes in acid water, Hydrobiol. 199:173–177.CrossRefGoogle Scholar
  184. Satake, K., Iwatsuki, Z., and Nishikawa, M., 1984. Inorganic elements in some aquatic briophytes from streams in New Caledonia, J. Hattori Bot. Lab. 57:71–72.Google Scholar
  185. Savenko, V. S., 1989. Elemental composition of ocean plankton, Geochem. Int. 26:9–15.Google Scholar
  186. Schlesinger, W H., 1991. Biogeochemistry. An Analysis of Global Change, Academic Press, San Diego, pp. 349–351.Google Scholar
  187. Shacklette, H. T., 1964. Element content of bryophytes. US Geol. Survey 1198D. pp. 1–21.Google Scholar
  188. Shacklette, H. T., 1967. Copper moses as indicators of metal concentrations. Geo. Survey Bull. 1198G,pp. 1–18.Google Scholar
  189. Shacklette, H. T., 1980. Elements in fruits and vegetables from areas of commercial production in the conterminous United States, US Geol. Survey Prof. Paper 1178, pp. 1–149.Google Scholar
  190. Shinogi, M., Fukuda, K., Nakazawa, M., and Mori, I., 1980. The study of elements in organisms by NAA. 3. The distribution of trace elements in various organs of normal rat and in cell fractions of rat liver, Chem. Pharm. Bull. 28:2094–2100.CrossRefGoogle Scholar
  191. Shtangeeva, I. V, and Kulikov, V D., 1986. The accumulation of chemical elements by some species of seaweeds, Bot. Zhurnal 71:1418–1422 (Russian).Google Scholar
  192. Simsons, A., and Landsberger, S., 1987. Analysis of marine biological reference materials by various nondestructive NAA methods, J. Radioanal. Nucl. Chem. Art. 110:555–556.CrossRefGoogle Scholar
  193. Sloof, J. E., and Wolterbeek, B. T., 1993. Substrate influence on epiphytic lichens, Environ. Monit. Assess. 25:225–234.CrossRefGoogle Scholar
  194. Smock, C. K., 1983. Relationships between metal concentrations and organism size in aquatic insects, Freshwater Biol. 13:313–321.CrossRefGoogle Scholar
  195. Spaargaren, D. H., 1991. The biological use of chemical elements. Selection in environmental availability and electron configuration, Oceanogr. Acta 14:569–576.Google Scholar
  196. Stetschenko, N. M., and Tabachny, L. Y., 1984. Ash element of the d-family in the ontogenesis of fems, Ukr. Bot. Zh. 41:59–63 (Ukraine).Google Scholar
  197. Stevenson, R. A., Ufret, S. L., and Diecidue, A. T., 1965. in: Peaceful Application of Nuclear Energy,International Symposium, Vol. 5, pp. 233–239.Google Scholar
  198. Stuessy, T. E, 1990. Plant Taxonomy, Columbia University Press, New York.Google Scholar
  199. Tadaki, B.-N., Muramatsu, Y., Yosdhida, S., Uchida, S., Shibata, S., Ambe, S., Ambe, F., and Suzuki, A., 1997. Multitrace studies on the accumulation of radionuclides in mushrooms, J. Radiat. Res. 38:213–218.CrossRefGoogle Scholar
  200. Takada, J., Takamatsu, T., Satake, K., and Sase, H., 1993. Data on elemental concentration in land plants by NAA. National Institute for Environment Studies, Ibaraki, pp. 1–260.Google Scholar
  201. Takeuchi, T., Nakano, Y., Aoki, A., Ohmori, S., and Tsukatani, T., 1986. Comparisons of elemental concentrations in hair of the inhabitants of heavy metal polluted areas with those of normal Japanese, Annu. Rep. Res. Reactor Inst Kyoto University 19:89–98.Google Scholar
  202. Talbot, V., and Chang, W. J., 1987. Rapid multi-element analysis of oyster and cockle tissue using x-ray fluorescence spectrometry, with application to reconnaissance marine pollution investigations, Sci. Total Sci. 66:213–223.CrossRefGoogle Scholar
  203. Teherani, D. K., and Badawi, N., 1988. Studies on the scandium distribution in organs of fattened chicken by NAA, J. Radioanal. Nucl. Chem. Lett. 127:395–400.CrossRefGoogle Scholar
  204. Thompson, C. M., Markesbery, W. R., Ehmann, W. D., Mao, Y-X., and Vance, D. E., 1988. Regional brain trace elements studies in Alzheimer’s disease, NeuroToxicol. 9:1–8.Google Scholar
  205. Thompson, S. E., Burton, C. A., Quinn, D. J., and Ng, Y. C.,1972. Concentration factors of chemical elements in edible aquatic organisms, UC Lavrence Livermore Laboratory Report 50564, pp. 1–77.Google Scholar
  206. Thöni, L., Schnyder, N., and Krieg, F., 1996. Comparison of metal concentrations in three species of mosses and metal freight in bulk precipitation, Fresenius J Anal. Chem. 354:703–708.Google Scholar
  207. Tran Van, L., and Teherani, D. K., 1988. Accumulation and distribution of elements in rice (seed, brand layer, husk) by NAA, J. Radioanal. Nucl. Chem. Lett. 128:35–42.CrossRefGoogle Scholar
  208. Tran Van, L., and Teherani, D. K., 1989. Determination of trace elements in biological materials by NAA, J Radioanal. Nucl. Chem. 135:443–448.CrossRefGoogle Scholar
  209. Turnock, W. J., Gerber, G. H., and Sabourin, D. U., 1980. An evaluation of the use of elytra and bodies in x-ray energy dispensing spectroscopy studies in the red turnip beetle Entomoscelis americana, Can. Entomol. 112:509–514.Google Scholar
  210. Tyankova, L., and Damyanova, A., 1984. Fe, Co. Zn, Br, Rb, Cs, Se, Cr, Sb and Sc content and growth of soybean nodules as affected by nutrient deficiency, in: Being Alive on Land,Tasks for Vegetation Science (N. S. Margaris et al., eds.), Dr. W. Junk Publishers, The Hague, Vol. 13, pp. 179–186.CrossRefGoogle Scholar
  211. Ure, A. M., and Bacon, J. R., 1978. Scandium, yttrium and the rare earth contents of water lily (Nuphar lutea), Geochim. Cosmochim. Acta 42:651–652.CrossRefGoogle Scholar
  212. Vanoeteren, C., and Cornelis, R., 1986. Critical evaluation of normal levels of major and trace elements in human lung tissues, Final Report Commission of the European Communities. EUR 10440 EN, Gent, pp. 1–141.Google Scholar
  213. Vanoeteren, C., Cornelis, R., Hoste, J., Haeghen, L. V., and Versieck, J., 1983. The regional distribution of trace elements in human lungs with differentiation of the fraction present in the deposited dust in: Trace Element Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schramel, eds.), de Gruyter, Berlin, Vol. 2, pp. 315–332.Google Scholar
  214. Vanoeteren, C., Cornelis, R., Versiek, J., and Dams, R., 1986. Evaluation of trace elements in human lung tissue. I. Concentration and distribution. 2. Recovery and analysis of inhaled particulates. 3. Correspondence analysis, Sci. Total Environ. 54:217–245.CrossRefGoogle Scholar
  215. Versieck, J., and Cornelis, R., 1989. Trace Elements in Human Plasma or Serum, CRC Press, Boca Raton, pp. 65–90.Google Scholar
  216. Ward, N. I., 1986. Multi-element analysis of urine by NAA.Application to starvation and anorexia nervosa, J. Micronutr. Anal. 2:211–231.Google Scholar
  217. Ward, N. I., and Pim, B., 1984. Trace elements concentrations in blood plasma from diabetic patients and normal individuals, Biol. Trace Elem. Res. 6:469–487.CrossRefGoogle Scholar
  218. Ward, N. I., Bryce-Smith, D., Minski, M., Zaaijman, J. du T., and Pim, B., 1983. Multielement NAA of amniotic fluid in relation to varying gestational membrane ruptures, in: Trace Element Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schramel, eds.), de Gruyter, Berlin, Vol. 2, pp. 483–498.Google Scholar
  219. Ward, N. I., MacMahon, T. D., and Mason, J. A., 1987. Elemental analysis of human placenta by neutron irradiation and gamma-ray spectrometry (standard, prompt and fast-neutron), J. Radioanal Nucl. Chem. Art. 113:501–514.CrossRefGoogle Scholar
  220. Wenstrup, D., Ehmann, W. D., and Markesbery, W. R., 1990. Trace elements imbalances in isolated subcellular fractions of Alzheimer’s disease brains, Brain Res. 533:125–131.CrossRefGoogle Scholar
  221. White, J. N. C., and Boutillier, J. A., 1991. Concentrations of inorganic elements and fatty acids in geographic populations of the spot prawn Pandalus platyceros, Can. J. Fish. Aqua. Sci. 48:382–390.CrossRefGoogle Scholar
  222. WHO, World Health Organization, 1996. Trace Elements in Human Nutrition and Health, MacMillan, London.Google Scholar
  223. Willett, J. D., and Knight, M. N., 1976. Quantitative determination of several metallic elements in whole cysts of Heterodera schachtii by NAA, Nematol. 22:352–359.CrossRefGoogle Scholar
  224. Wirtz, G. H., and Olenchock, S. A., 1984. Elemental analysis of airborne grain dusts, J. Environ. Sci. Health B19:379–391.Google Scholar
  225. Wise, S. A., Schantz, M. M., Koster, B. J., Demiralp, R., Mackey, E. A., Greenberg, R. R., Burow, M., Ostapczuk, P., and Lillestolen, 1993. Development of frozen whale blubber and liver reference materials for the measurement of organic and inorganic contaminants, Fresenius J. Anal. Chem. 345:270–277.CrossRefGoogle Scholar
  226. Wolstenholme, W. A., 1964. Analysis of dried blood plasma by spark source mass spectrometry, Nature 203:1284–1285.CrossRefGoogle Scholar
  227. Woodland, D. W, 1991. Contemporary Plant Systematics, Prentice-Hall, Engelwood Cliffs.Google Scholar
  228. Wutscher, J. K., and Perkins, R. E., 1993. Acid extractable rare earth elements in Florida citrus soils and trees, Soil. Sci. Plant Anal. 24:2059–2068.CrossRefGoogle Scholar
  229. Wyttenbach, A., Bajo, S., and Tobler, L., 1987. Aerosols deposited on spruce needles, J. Radioanal Nucl. Chem. Art. 114: 137–145.CrossRefGoogle Scholar
  230. Wyttenbach, A., Schleppi, E, Bucher, J., Furrer, V, and Tobler, L., 1994. The accumulation of the rare earth elements and of scandium in successive needle age classes of Norway spruce, Biol. Trace Elem. Res. 41:13–29.CrossRefGoogle Scholar
  231. Yamaguchi, T., Bando, M., Nakajima, A., Terai, M., and Suzuki-Yasumoto, M., 1980. An application of NAA to biological materials, J. Radioanal. Chem. 57:169–183.CrossRefGoogle Scholar
  232. Yamaguchi, T., Otsuka, Y., Kawashima, T., Koda, T., Okamoto, K., and Aoyama, K., 1983. Distribution of trace elements in marine algae. Comparative biogeochemical data, Report Kyoto University. Google Scholar
  233. Yamamoto, T., and Otsuka, Y., 1985. The distribution of chemical elements in selected marine organisms. Comparative biogeochemical data, in: Marine and Estuarine Geochemistry (A. C. Sigleo and A. Hattori, eds.), Lewis Publ., Chelsea, pp. 315–327.Google Scholar
  234. Yamamoto, T., Otsuka, Y., Aoyama, K., and Okamoto, K., 1983a. Character of each element on its distribution in sea weeds, Hydrobiol. 116–117:510–512.Google Scholar
  235. Yamamoto, T., Otsuka, Y., Kawashima, T., Koda, Y., Okamoto, K. and Aoyama, K., 1983b. Distribution of trace elements in marine algae. Comparative biogeochemical data, Project Research Kyoto University of Education, pp. 1–499.Google Scholar
  236. Yliruokanen, I., 1975a. A chemical study on the occurrence of rare earths in plants, PhD thesis, Helsinki University of Technology.Google Scholar
  237. Yliruokanen, I., 1975b. Uranium, thorium, lead, lanthanides and yttrium in some plants growing on granitic and radioactive rocks, Bull. Geol. Soc. Finland 47:71–78.Google Scholar
  238. Yliruokanen, I., Minkkinen, P. and Sarkka, J., 1983. Trace element data of aquatic plants interpreted by the SIMCA pattern recognition method, Kemia-Kemi 10:713–718 (Finnish).Google Scholar
  239. Yoshinaga, J., Matsuo, N., Imai, H., Nakazawa, M., and Suzuki, T., 1990. Application of ICP-MS to multi-element analysis of human organs, Internat. J. Environ Anal. Chem. 41:27–38.CrossRefGoogle Scholar
  240. Zaichik, V. Ye., and Baghirov, Sh. T., 1991. The content of chemical elements of non-stimulated saliva of healthy humans,Stomatologhya 1:14–17 (Russian).Google Scholar
  241. Zeisler, R., Stone, S. F., and Sanders, R. W, 1988. Sequential determination of biological and pollutant elements in marine bivalves, Anal. Chem. 60:2760–2765.CrossRefGoogle Scholar
  242. Zhang, Y., Diao, G., Cheng, J., Cong, H., Liu, Y., and Xiao, L., 1984a. Determination of TE in the horn of Saiga tatarica L by NAA, Yaowu Feuxi Zazhi 4:342–344 (Chinese).Google Scholar
  243. Zhang, Y., Liu, Y., Diao, G., and Xiao, L., 1984b. NAA of trace elements in horns of rhinoceros and buffalo, Hejishu 2:45–46 (Chinese).Google Scholar
  244. Zhuk, L. I., Kist, A. A., Mikholskaya, I. N., Osinskaya, N. S., Tillaev, T., Tursunbaev, S. L., and Agzamova, S. V, 1988.Elemental blood composition of the inhabitants of Uzbekistan, J Radioanal. Nucl. Chem. Art. 120:369–377.CrossRefGoogle Scholar
  245. Zinchenko, T. V, and Zinchenko, O. V, 1970. Trace element content in ash residue of some Labiatae plants, Farm. Zh. 25:32–37 (Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Chaim T. Horovitz
    • 1
  1. 1.RehovotIsrael

Personalised recommendations