Advertisement

Analytical Chemistry of Scandium and Yttrium

  • Chaim T. Horovitz
Chapter
  • 203 Downloads
Part of the Biochemistry of the Elements book series (BOTE, volume 13A)

Abstract

Early investigations of scandium and yttrium depended on rather unsatisfactory analytical methods. Due to a lack of interest in these elements progress in their analysis was relatively slow. During the last two decades there was an obvious increase of research into their biological significance and applications. The sophistication of instrumentation and changes in the concepts of analytical chemistry (Tölg, 1992) now offer increased sensitivity and selectivity in trace and ultra-trace analysis. The analysis of scandium and yttrium in various matrices is of increasing importance in numerous fields of applications in medicine, biological sciences, technology, and in environmental problems. Details about the analytical chemistry of these elements are contained in monographs (Wilson and Wilson, 1959-1990;Crompton, 1989;Vandecasteele and Block,1993; Herber and Stoeppler, 1994;Alfassi, 1994), or such works devoted to specific methods of analysis. Earlier works on the analytical chemistry of these elements were reviewed (Busev et al., 1970;Horovitz, 1975). Also, patents were assigned solely to scandium and yttrium, or jointly with other elements a (Kamei and Okushita, 1989; Degtev et al., 1989;, Herchenröder and Burkholder, 1990).

Keywords

Neutron Activation Analysis Inductively Couple Plasma Atomic Fluorescence Spectroscopy Standard Reference Material Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J., 1982. Determination of thorium and scandium by indirect chronopotentiometric stripping analysis, Talanta 29:939–940.Google Scholar
  2. Ahuja, S., 1992. Trace and ultratrace Analysis by HPLC, John Wiley and Sons, New York, pp. 303–398.Google Scholar
  3. Alfassi, Z. B., ed., 1990. Activation Analysis, CRC Press, Boca Raton, Vols. 1 and 2.Google Scholar
  4. Alfassi, Z. B., ed., 1994. Determination of Trace Elements, VCH, Weinheim.Google Scholar
  5. Alimarin, I. P, Fadeeva, V. I., Kudryavtsev, G. V, Loskutova, I. M., and Tikhomirova, T. I., 1987. Concentration, separation and determination of scandium, zirconium, hafnium and thorium with a silica-based sulfonic acid cation-exchanger, Talanta 34:102–110.Google Scholar
  6. Amato, I., 1993. Analytical titans gather at Pittcon to predict the future, Science 259:1260–1261.Google Scholar
  7. Arabidze, G. G., Burkitaev, S. M., Bykovski, Yu.- A., Kutzenko, A. I., Laptev, I. D., Manykin, E. A.,Petrenko, E. A., and Timoshin, V. T., 1985. Element analysis of sclerotic formations of large blood vessels by laser MS, Biofizika 30:655–660 (Russian).Google Scholar
  8. Bächmann, K., 1966. The-use of high-voltage electrophoresis for the separation of radioactive nuclides, Z. Anal. Chem. 218:321–338 (German).Google Scholar
  9. Barnes, R. M., 1984. Determination of trace elements in biological materials by ICP spectroscopy with novel chelating resins, Biol. Trace Elem. Res. 6:93–103.Google Scholar
  10. Batley, G. E., 1989. Trace Element Speciation. Analytical Methods and CRC. Press, Boca Raton. Google Scholar
  11. Bautista, R. G., 1995. Separation chemistry, in: Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, pp. 1–27.Google Scholar
  12. Beliveau, R., Gelinas, Y., Ferraris, J., and Schmit, J. P., 1990. Complete analysis of the trace elements of the kidney, Biochem. Cell Biol. 68:1272–1280.Google Scholar
  13. Benninghoven, A., Ruedenauer, F. G., and Werner, H. W, eds., 1987. Secondary Ion Mass Spectrometry, John Wiley and Sons, New York.Google Scholar
  14. Bettinelli, M., and Spezia, S., 1995. Determination of REE in sea water by IC-ICP-MS, Atom. Spectr. 133–138.Google Scholar
  15. Bhilare, N. G. and Shinde, V. M., 1996. Liquid-liquid extraction and separation studies of yttrium, Fresenius J. Anal. Chem. 354:122–124.Google Scholar
  16. Bishop, E., ed, 1972. Indicators, Pergamon Press, Oxford.Google Scholar
  17. Boerma, D. O., Smit, E. P, and Roosnek, N., 1989. PIXE trace elements determination and its accuracy in the analysis of bile, Nucl. Instrum. Methods Phys. Res. 36B:60–73.Google Scholar
  18. Boumans, P. W. J. M., ed., 1987. ICP Emission Spectroscopy, John Wiley and Sons, New York, Part 2.Google Scholar
  19. Brand, L., and Johnson, M. L., eds., 1992. Numerical computer methods, in: Methods in Enzymology, Vol. 210, Academic Press, San Diego.Google Scholar
  20. Braun, T., and Zsindely, S., 1991. Trends and tendencies in instrumental analysis technique with special emphasis on environmental analysis, Rev. Roum. Chim. 36:481–506.Google Scholar
  21. Briden, E, and Lewis, D., 1981. Reliability of spark source MS for environmental assessment, Int. J. Environ. Anal. Chem. 9:249–264.Google Scholar
  22. Buchtela, K., Grass, E, and Müller, G., 1975. Radio-gaschromatography of metal chelates, J. Chromatogr. 103:141–151 (German).Google Scholar
  23. Bünzli, J. C. G., 1989. Luminescent probes, in: Lanthanide Probes in Life, Chemical and Earth Sciences (J. C. G. Bünzli and G. R. Chopin, eds.), Elsevier, Amsterdam, pp. 219–299.Google Scholar
  24. Burn, D. T., Townshend, D. T., and Carter, A. H., 1980. Inorganic Reactions Chemistry, Ellis Horwood, New York, Vol. 2, Part B.Google Scholar
  25. Busev, A. I., Tiptsova, V. G., and Ivanov, V. M., 1970. Handbook of the Analytical Chemistry of Rare Elements, Arm Arbor-Humphrey Sci. Publ., Ann Arbor.Google Scholar
  26. Bykhovtsova, T. T., and Bykhovtsova, I. V, 1987. Spectrophotometric determination of scandium using xylenol orange with prior concentration and separation from interfering elements by precipitation with oxalic acid, J Anal. Chem. USSR 42:991–995.Google Scholar
  27. Cai, R., Huang, H., Wang, G., and Zeng, Y., 1994. Study and analytical application of rare earth inhibition of laccase, Talanta 41:735–738.Google Scholar
  28. Caletka, R., Hausbeck, R., and Krivan, V., 1990. Retention behavior of some tri-to hexavalent elements on Dowex 1 and polyurethane foam from HCl-KSCN medium, Anal. Chim. Acta 229:127–138.Google Scholar
  29. Cano Pavon, J. M., Bosch Ojeda, C., Garcia de Torres, A., and Salgado Ordonez, M., 1990. Fluorimetric determination of trace amounts of scandium with di-2-pyridyl-ketone 2furoylhydrazone, Anal. Lett. 23:1553–1564.Google Scholar
  30. Carmo Freitas, N., 1993. Element concentrations in candidate biological and environmental reference materials by K0-standardized INAA, Fresenius J. Anal. Chem. 345:304–307.Google Scholar
  31. Cerda, V., and Ramis, G., 1990. An Introduction to Laboratory Automation, John Wiley and Sons, New York.Google Scholar
  32. Chai, C. F., 1993. Present status and future trends in biological and environmental reference materials in China, Fresenius J Anal. Chem. 345:93–98.Google Scholar
  33. Chatt, A., DeSilva, K. N., Holzbecher, J., Stuart, D. C, Tout, R. E., and Ryan, D. E., 1981. Cyclic NAA of biological and metallurgical samples, Can. J. Chem. 59:1660–1664.Google Scholar
  34. Chatt, A., Dang, H. S., Fong, B. B., Jayawickreme, C. K., McDowell, L. S., and Pegg, D. L., 1988. Determination of trace elements in food by NAA J. Radioanal. Nuclear Chem. Art. 124: 65–77.Google Scholar
  35. Chiba, M., Shinohara, A., Saiki, M., and Inaba, Y., 1994. Comparative study of methods for determining lanthanide elements in biological materials by using NAA, HPLC postcolumn reaction, and ICP-MS, Biol. Trace Elem. Res. 7:561–569.Google Scholar
  36. Chisela, E, Gawlik, D., and Brauer, P, 1986. Instrumental determination of some trace elements in biological materials by epithermal and thermal INAA, Analyst 111:405–410.Google Scholar
  37. Chuang, J. T., and Lo, J. G.., 1996. Extraction chromatographic separation of carrier-free 90Y from 90Sr/90Y generator by crown ether-coated silica gels. J. Radioanal. Nucl. Chem. 204:83–93.Google Scholar
  38. Claessens, R. A. M. J., Janssen, A. G. M., Van den Bosch, R. L. E, and De Goeij, J. J. M., 1986. The 87Y/87mY generator. A new approach to its-preparation, in: Progress in Radiopharmacy (P. H. Cox et al., eds.), Martinus Nijhoff Publ., Dordrecht, pp. 46–63.Google Scholar
  39. Clement, R. E., ed, 1990. Gas Chromatography, Biochemical,Biomedical, and Clinical Applications, John Wiley and Sons, New York.Google Scholar
  40. Cohen, D. D., and Clayton, E., 1987. A database for thick target PIXE, Nuclear Instr. Meth. Phys. Res. 22B:59–63.Google Scholar
  41. Cornelis, R., 1989. Methods of inorganic analysis and detection application to biological samples, in: Nutrient Availability. Chemical and Biological Aspects (D. A. T. Southgate et al., eds.), Royal Society of Chemistry, London, pp. 51–59.Google Scholar
  42. Cortes Toro, E., Parr, R. M., and Clements, S. A. 1990. Biological and environmental reference materials for trace elements nuclides and organic micro-contaminants, IAEA Survey RL, Vienna.Google Scholar
  43. Cowgill, U., 1989. The chemical and mineralogical content of the plants of Lake Huleh Preserve, Israel, Phil. Trans. Roy. Soc. London 326B:59–118.Google Scholar
  44. Crompton, T. R., 1989. Analysis of Seawater, Butterworths, London.Google Scholar
  45. Daniel, H., 1987. Application of muonic x-rays for elemental analysis, Biol. Trace Elem. Res. 13:301–318.Google Scholar
  46. Date, A. R., and Jarvis, K. E., 1989. Application of ICP-MS in the earth sciences, in: Applications of Inductively Coupled Plasma Mass Spectrometry (A. R. Date and A. L. Gray, eds.), Blackie, Glasgow, pp. 43–70.Google Scholar
  47. Dean, J. A., 1995. Analytical Chemistry Handbook. McGraw-Hill, Inc., New York.Google Scholar
  48. De Bruin, M., and Van Wijk, P. M., 1988. Trace elements patterns obtained by INAA as a basis for source identification, J. Radioanal. Nucl. Chem. Art. 123:227–238.Google Scholar
  49. Degtev, M. I., Petrova, E. N., and Khorkova, M. A., 1989. Method for separating scandium and yttrium, USSR patent 1479420.Google Scholar
  50. Deorkar, N. V, and Khopkar, S. M., 1991. Separation of scandium using liquid-liquid extraction with macrocyclic polyether(s) from picrate media, Bull. Chem. Soc. Jpn. 64:1962–1965.Google Scholar
  51. DeSilva, K. N., and Chatt, A., 1982–1983. A method to improve precision and detection limits for measuring trace elements through short-lived nuclides, J Trace Microrpobe Techn. 1:307–337.Google Scholar
  52. Dietz, M. L. and Horwitz, E. P., 1992. Improved chemistry for the production of 90Y for medical applications, Appl. Radiat. Isot. 43:1093–1101.Google Scholar
  53. Du, H. S., Dong, G. Z., Yang, X. I., Li, G. H., and Wai, C. M., 1995. Development of a method for the preparation of highly purified 90Y, Microchem. J. 52:213–235.Google Scholar
  54. Durrant, S. E, and Ward, N. I., 1993. Rapid multi-element analysis of Chinese reference soils by laser ablation ICP-MS, Fresenius J. Anal. Chem. 345:512–517.Google Scholar
  55. Dytnersky, Yu. I., Volcheck, K. A., and Polyanskaya, N. B., 1991. Separation of multicomponent solutions using reagent ultrafiltration, Desalination 81:273–279.Google Scholar
  56. Ehmann, W. D., and Vance, D. E., 1991. Radiochemistry and Nuclear Methods of Analysis, John Wiley and Sons, New York.Google Scholar
  57. Faanhof, A., Das, H. A., and Zonderhuis, J., 1980. Possibilities of the elemental analysis of dry biological material by fast NAA, J. Radioanal. Chem. 56:173–184.Google Scholar
  58. Fassett, J. D., 1987, personal communication, with permission.Google Scholar
  59. Fasett, J. D., Moore, L. J., Travis, J. C., and Devoe, J. R., 1985. Laser resonance ionization MS, Science 230:262–267.Google Scholar
  60. Fedorowich, J. S., Richards, J. E, Jain, J. C., Kerrich, R., and Fan, J., 1993. A rapid method for REE and trace elements analysis using laser sampling ICP-MS on direct fusion whole-rock glasses, Chem. Geol. 106:229–249.Google Scholar
  61. Fey, W, and Lieser, K. H., 1993. Quality control of rare earth compounds by multielement analysis without chemical separation, Fresenius J. Anal. Chem. 346:896–904.Google Scholar
  62. Foldiak, G., ed., 1986. Industrial Applications of Radioisotopes, Elsevier, Amsterdam.Google Scholar
  63. Gao X., 1986. Polarographic analysis of REE, in: Handbook of the Physics and Chemistry of Rare Earths (K. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, Vol. 8, pp. 163–201.Google Scholar
  64. Garcia Sanchez F., Cruces Bianco, C., and Heredia Bayona, A., 1987. Non-aqueous fluorimetric determination of scandium in silicate rocks, Talanta 34:345–350.Google Scholar
  65. Georgi, J. R., 1982. Schistosoma mansoni: Quantification of skin penetration and early migration by differential external radioassay and autoradiography, Parasitol. 84:263–281.Google Scholar
  66. Gladney, E. S., 1980. Elemental concentrations in NBS biological and environmental standard reference materials, Anal. Chim. Acta 118:385–396.Google Scholar
  67. Grau Malonda, A., Rodriguez Bárguero, L., and Grau Carles, A., 1994. Radioactivity determination of 99Y 90Sr and 89Sr mixtures, Nuclear Instr. Meth. Phys. Res. A39:31–37.Google Scholar
  68. Gray, A. L., 1989. The origins, realization and performance of ICP-MS systems, in: Applications of ICP-MS (A. R. Date and A. L. Gray, eds.), Blackie, Glasgow, pp. 1–42.Google Scholar
  69. Greenberg, R. R., Kingston, H. M., Watters, R. L., Jr., and Pratt, K. W, 1990. Dissolution problems with botanical reference materials, Fresenius J. Anal. Chem. 338:394–398.Google Scholar
  70. Grime, G., Watt, F, and Sutton, C., 1991. Microscope with proton power, New Scientist June 1, pp. 14.Google Scholar
  71. Guilbault, G. G., ed. 1990. Practical Fluorescence, Marcel Dekker, New York.Google Scholar
  72. Guinn, V. P., and Gavrilas, M., 1990. Biological and environmental materials in NAA work, Fresenius J. Anal. Chem. 228:551–553.Google Scholar
  73. Haddad, P. R., and Jackson, P. E., 1990. Ion Chromatography. Principle and Applications, Elsevier, Amsterdam.Google Scholar
  74. Hafez, M. A. H., and Emam, M. S. M., 1986. Photometric micro-determination of scandium and lanthanides by direct and successive titration using semi-xylenol orange, Analyst 111:1435–1438.Google Scholar
  75. Hamaguchi, H., Onuma, N., Kishi, M., and Kuroda, R., 1964. Anion-exchange behavior of scandium, Talanta 11:495–500. Google Scholar
  76. Hamly, J. M., Styris, D. L., and Rigby, P. G., 1993. Discharges with graphite furnace atomizers, in: Glow Discharge Spectroscopies (R. K. Marcus, ed.), Plenum Press, New York, pp. 373–420.Google Scholar
  77. Harrison, W. W, and Donohue, D. L., 1989. Spark source spectrometry in: Treatise on Analytical Chemistry (J. D. Winefordner, ed.), John Wiley and Sons, New York, Vol. 11, pp. 189–235.Google Scholar
  78. Herber, R. E. M., and Stoeppler, M., eds., 1994. Trace Element Analysis in Biological Specimens Elsevier, Amsterdam.Google Scholar
  79. Herchenröder, L. A., Burkholder, H., Beaudry, B. J., and Schmidt, E A., 1989. Chelate additives and the purification of scandium by displacement ion-exchange chromatography, J. Less-Common Metals 155:37–43.Google Scholar
  80. Herchenröder, L. A., and Burkholder H. 1990. Ion exchange purification of scandium, US Patent 4965053. CA 114:26672T.Google Scholar
  81. Hergenröder, R., and Niemax, K., 1989. Atomic absorption spectroscopy with tunable semiconductor diode lasers, Trends Anal. Chem. 8:333–335.Google Scholar
  82. Heydom, K., 1984. Neutron Activation Analysis for Clinical Trace Element Research, CRC Press, Boca Raton, Vols. 1 and 2.Google Scholar
  83. Hirokawa, T., Wen, X., and Kiso, Y., 1995. Isotachophoretic separation of rare earth ions. 1. Separation behavior of yttrium and 14 lanthanide ions forming complexes with tartaric acid and a-hydroxyisobutyric acid, J. Chromatogr. A 689:149–156.Google Scholar
  84. Hirunuma, R. et al., 1995. Multitracer studies of behavior in rats and mice, J. Inorg. Biochem. 59:534.Google Scholar
  85. Hoffmann, P, Lieser, K. H., Abig, S., Stingi, U., and Pilz, N., 1989. Contamination of water in a chemical laboratory. Impurities in plastic foils and quartz ampoules and their influence on analytical results, Fresenius J. Anal. Chem. 335:847–851.Google Scholar
  86. Honda, M., Yoneda, S., and Nagai, H., 1995. Determination of natural yttrium along with rare earths by NAA, Geochem. J. 2S:55–65.Google Scholar
  87. Horlick, G., and Shao, Y., 1992. ICP-MS for elemental analysis, in: ICP in Analytical Atomic Spectrometry (A. Montaser and D.W. Golightly, eds.), VCH, New York, pp. 551–612.Google Scholar
  88. Horovitz, C. T. 1975. Analytical chemistry of scandium, in: Scandium, Its Occurrence, Chemistry,Physics, Metallurgy, Biology and Technology (C. T. Horovitz, ed.), Academic Press, London, pp. 385–488.Google Scholar
  89. Horovitz, C. T., 1989, unpublished data.Google Scholar
  90. Horvath, Z., Lasztity, A., and Barnes, R. M., 1991. Preconcentration and separation techniques for ICP and MS analyses, Spectrom Acta 14:45–78.Google Scholar
  91. Houk, R. S., 1990. Elemental analysis by AES and MS with ICP, in: Handbook on the Physics and Chemistry of Rare Earths (L. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, Vol. 13, pp. 385–421.Google Scholar
  92. Houk, R. S., and Thompson, J. J. 1988. ICP-MS, Mass Spectr. Rev. 7:425–461.Google Scholar
  93. Hsu, C.-G., Liu, S.-C., and Pan, J.-M. 1995. Spectrophotometric determination of scandium based on the cocoloration effect in scandium-cerium-p-acetylchlorophosphonazo system, Talanta 42:1905–1911.Google Scholar
  94. Hsu, C. G., Xu, Q., and Pan, J. M., 1997. Determination of trace scandium by ion-exchange phase spectrometry with p-nitrochlorophosphonazo, Mikrochim. Acta 126:83–86.Google Scholar
  95. Hubicki, Z., 1989. Anion-exchange resin modified with sulfonic derivatives of organic complexing reagents as a new type of functional resin for the selective separation of Sc3+ from Y3+ and Lait Hung. J. Ind. Chem. 17:51–60.Google Scholar
  96. Hubicki, Z., 1990. Studies on selective separation of Sc3+ from rare earth elements on selective ion-exchangers, Hydrometal. 23:329–133.Google Scholar
  97. Huljev, D., 1989. Trace metals in DNA molecules obtained from wheat germs, Radio!. Iugosl. 23:213–215.Google Scholar
  98. Huneck, S., Bothe, H.-K., and Richter W., 1990. On the metal content of lichens from copper schist dumps of the surroundings of Mansfeld, Herzogia 8:295–304 (German).Google Scholar
  99. Ichihashi, H., Morita, H., and Tatsukawa, R., 1992. REE in naturally grown plants in relation to their variation in soil, Environ. Pollut. 76;157–162.Google Scholar
  100. Idriss, K. A. R., Hassan, M. K., Abu-Bakr, M., and Sedaira, H., 1984. Spectrophotometric study of the complexation equilibria of yttrium with quinizarin green, Analyst 109:1389–1392.Google Scholar
  101. Ishida, K., Ninomiya, S., Takeda, Y., and Watanabe, K., 1986. TLC behavior and separation of rare earth elements on silica gel nitrate solution, J. Chromat. 351:489–494.Google Scholar
  102. Iwata, Y., and Suzuki, N., 1992. Preparation of pseudo-biological reference materials containing all REE and its application to the assessment of the accuracy of rare earths determined by NAA after separation by coprecipitation, Anal. Chim. Acta 259:159-I63.Google Scholar
  103. Iwata, Y., Imura, H., and Suzuki, N., 1990. Selective preconcentration of rare earth elements by substoichiometric precipitation of calcium oxalate and its application to the NAA of biological material, Anal. Chim. Acta 239:115–120.Google Scholar
  104. Iyengar, G. V, 1995. Reference values for trace elements in human clinical specimens with special reference to biomonitoring and specimen suitability, in: Kinetic Models of Trace Elements and Mineral Metabolism During Development (K. N. Siva Subramanian and M. E. Wastney, eds.), CRC Press, Boca Raton.Google Scholar
  105. Iyengar, G. V, Kasperek, K., and Feinendegen, L. E., 1980. Retention of metabolized trace elements in biological tissues following different drying procedures, Analyst 105:794–780.Google Scholar
  106. Jarosz, M., and Marczenko, Z., 1984, Spectrophotometric study of reactions of scandium, yttrium and lanthanum ions with some triphenylmethane dyes in the presence of cationic surfactants, Anal. Chim. Acta 159:309–317.Google Scholar
  107. Jarvis, I., 1992. Sample preparation for ICP-MS, in: Handbook of Inductively Coupled Plasma Mass Spectrometry (K. E. Jarvis et al., eds.), Blackie, Glasgow, pp. 172–224.Google Scholar
  108. Jarvis, K. E., and Williams, J. G., 1993, Laser ablation-ICP-MS. A rapid technique for the direct, quantitative determination of major, trace and rare earths in geological samples, Chem. Geol. 106:251–262.Google Scholar
  109. Jervis, R. E., and Wong, K. Y., 1967. Chromatographic group separation scheme used with gamma spectrometry for multi-element NAA surveys, in: Nuclear Activation Techniques in Life Sciences I.A.E.A, Vienna, pp. 137–152.Google Scholar
  110. Jinno, K., Kawasaki, K., Sato, M., Amemiya, S., and Katoh, T., 1983. Detection limit in the (pX,X) technique. A novel method for trace element analysis, J Radioanal. Chem. 76:139–149.Google Scholar
  111. Johansson, S. A. E., and Campbell, J. L., 1988. PIXE: A Novel Technique for Elemental Analysis, John Wiley and Sons, Chichester.Google Scholar
  112. Johnson, K. T. M., Dick, H. J. B., and Shimizu, N., 1990. Melting in the oceanic upper mantle. An ion microprobe study of diopsides in abyssal peridotites, J. Geophys. Res. 95:2661–2678.Google Scholar
  113. Jones, W. R., 1994. Electrophoretic capillary ion analysis, in: Handbook of Capillary Electrophoresis (J. P. Landers, ed.), CRC Press, Boca Raton, pp. 209–232.Google Scholar
  114. Jork, H., Funk, W., Fischer, W., and Wimmer, H., 1990. Thin-Layer Chromatography, Reagents and Detection Methods, VCH, Weinheim, Vol. la.Google Scholar
  115. Jorstad, K., and Salbu, B., 1980. Determination of trace elements in sea water by NAA and electrochemical separation, Anal. Chem. 52:672–676.Google Scholar
  116. Kamei, E., and Okushita, Y., 1989. Selective separation of scandium from aqua salmon, Japan patent 01108118. CA 111:236049j.Google Scholar
  117. Karcher, B. D., and Krull, I. S., 1987. Fluorescence detection of metal ions separated on a silica-based HPLC reversed-phase support, J. Chromatogr. Sci. 25:472–478.Google Scholar
  118. Kenawy, I. M., and Hafez, M. A. H., 1989. Application of wall stabilized plasma arc to optical AES of lanthanides, yttrium and scandium after separation with cellulose ion-exchanger, Anal. Sci. 5:5560.Google Scholar
  119. Kingston, H. M., and Jassie, L. B., eds., 1988. Introduction to Microwave Sample Preparation Theory and Practice, ACS, Washington.Google Scholar
  120. Kistemaker, P. G., and Nibbering, N. M. M., 1992. Advances in Mass Spectrometry, Elsevier, Amsterdam.Google Scholar
  121. Klockenkämper, R., Knoth, J., Prange, A., and Schwenke, H., 1992. total-reflection X-ray fluorescence spectroscopy, Anal. Chem. 64:1115–1120.Google Scholar
  122. Kniseley, R. N., Fassel, V. A., and Butler, C. C., 1970. Atomic emission and absorption spectroscopy of the rare earth elements, in: Analytical Flame Spectroscopy (R. Mavrodineanu, ed.), Macmillan, London, pp. 379–410.Google Scholar
  123. Korenman, Y. I., Zeltser, L. E., Bychenko, A. V, Vereshchagna, N. G., and Arkhipova, L. A., 1994. Sorption-fluorimetric determination of scandium by using immobilized quercetin, Zh. Prikl. Khim. 67:322–325 (Russian).Google Scholar
  124. Korkisch, J., 1989. Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry, CRC Press, Boca Raton, Vols. 1–4.Google Scholar
  125. Korovin, V. Yu., Randarevich, S. B., Bodaratskii, S. V, and Trachevskii, V. V, 1990. A 31P and 45Sc NMR study of the extraction of scandium from sulfuric acid solutions by TBP and SEXTR-TBP, Russian J. Inorg. Chem. 35:1369–1372.Google Scholar
  126. Kovacs, M., Nyary, I., and Toth, L., 1984. The microelement content of some submerged and floating aquatic plants, Acta Bot. Hung. 30:173–185.Google Scholar
  127. Kramer, J. R., and Allen, H. E., eds, 1988. Metal Speciation. Theory and Applications, Lewis Publishing, Boca Raton.Google Scholar
  128. Krivan, V, Schneider, G., Baumann, H., and Reus, U., 1994. Multi-element characterization of tobacco smoke condensate, Fresenius J Anal. Chem. 348:218–225.Google Scholar
  129. Krueger, C., Gorski, B., Novgorodov, A. E, and Fischer, S., 1990. A rapid separation method for radio-scandium from proton-irradiated transition metals, J. Radioanal. Nucl. Chem. 144:17–25.Google Scholar
  130. Kucera, J., Soukal, I., and Horakova, J., 1993. NAA of new botanical reference materials, Fresenius J.Anal. Chem. 345:188–192; 193–197.Google Scholar
  131. Landers, J. E, ed., 1994. Handbook of Capillary Electrophoresis, CRC Press, Boca Raton.Google Scholar
  132. Lanza, P., 1997. Polarographic determination of yttrium based on reduction of its solochrome violet RS complex. Application to the analysis of the superconductive YBa2Cu3O4, Anal. Chim Acta 34:91–95.Google Scholar
  133. Lepel, E. A., and Laul, J. C., 1987. Trace rare earth element analysis of IAEA hair, animal bone and other biological standards by radiochemical neutron analysis, J. Radioanal. Nucl. Chem. Art. 113:275–284.Google Scholar
  134. Letokhov, V. S., ed., 1985. Laser Analytical Spectrochemistry, Adam Hilger, Bristol.Google Scholar
  135. Lin, X., Van Renterghem, D., de Corte, F., and Cornelis, R., 1989. Correction for neutron induced reaction interferences in the k0-standardization method, J. Radioanal. Nuclear Chem. Art. 133:153–165.Google Scholar
  136. Lodding, A., Odelius, H., and Petersson, L. G., 1984. Sensitivity and quantitation of SIMS as applied to biomineralization, in: Secondary Ion Mass Spectrometry (A. Benninghoven et al., eds), Springer-Verlag, Berlin,pp. 478–484.Google Scholar
  137. Lvov, B. V, 1988. GF-AAS on the way to absolute analysis, Anal. Proc. 25:222–224.Google Scholar
  138. Maenhaut, W, 1990. Multielement analysis of biological materials by particle-induced X-ray emission (PIXE), Scanning Microscopy 4:43–62.Google Scholar
  139. Maenhaut, W, 1994, personal communication, with permission.Google Scholar
  140. Maenhaut, W, DeReu, L., and Tomza, V, 1982. The determination of trace elements in commercial human serum albumin solutions by proton-induced x-ray emission spectrometry and NAA, Anal. Chim. Acta 136:301–309.Google Scholar
  141. Marcus, Y., and Kertes, A. S., 1969. Ion Exchange and Solvent Extraction of Metal Complexes, John Wiley and Sons, London.Google Scholar
  142. Marczenko, Z., 1986. Separation and Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, New York, pp. 501–505.Google Scholar
  143. Markert, B., 1993. Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research sample, Fresenius J. Anal. Chem. 345:318–322.Google Scholar
  144. Markert, B., and Li, Z. D., 1991. Natural background, concentrations of rare earths in a forest ecosystem, Sci. Total Environ. 103:27–35.Google Scholar
  145. Maxwell, J. A., Campbell, J. L., and Teesdale, W. J., 1989.The Guelph PIXE software package, Nucl. Instr. Meth. Phys. Res. B43: 218–230.Google Scholar
  146. McClure, J., and Smith, P. S., 1984. The localization of Al and other elements in bone tissue of a case of renal osteodystrophy with an associated dialysis encephalopathy syndrome, J. Pathol. 142:293–299.Google Scholar
  147. Miyata, T., Goto, M., and Nakashio, E, 1995. Novel synergistic agent for selective separation from other elements, Separ. Sci. Technol. 30:2349–2363.Google Scholar
  148. Mizuike, A., 1983. Enrichment Techniques for Inorganic Trace Analysis, Springer-Verlag, Berlin. Moenke-Blankenburg, L., 1989. Laser Microanalysis, John Wiley and Sons, Chichester.Google Scholar
  149. Moldovan, Z., Vladescu, L., and Sandu, T., 1997. Sorption of Sc3+ Y3+ and La3+ using some resins with complexing properties, Rev. Chim (Bucharest), 48:63–67 (Rumanian).Google Scholar
  150. Montaser, A., and Golightly, D. W, eds, 1992. Inductively Coupled Plasmas in Analytical Atomic Spectrometry, VCH, New York.Google Scholar
  151. Moore, L. J., Fassett, J. D, and Travis, J. C., 1984. Systematics of multielement determination with resonance ionization MS and thermal atomization, Anal. Chem. 56:2770–2775.Google Scholar
  152. Morrison, G. H., and Potter, N. M., 1972. Multielement NAA of biological materials using chemical group separation and high resolution gamma spectrometry, Anal. Chem. 44:839–842.Google Scholar
  153. Mumcu, T., Gökmen, I., Gökmen, A., Parr, R. M., and Aras, N. K., 1988. Determination of minor and trace elements in Turkish diet by duplicate portion technique, J. Radioanal. Nucl. Chem. Art. 124:289–299.Google Scholar
  154. Muzgin, V. N., Atnashev, V. B., Pupyshev, A. A., and Atnashev, Yu. B., 1986. AAS trace analysis with a carbon-modified tungsten-coil atomizer, J. Anal. Chem. USSR 41:1246–1252.Google Scholar
  155. Nakahara, H., Tsukada, M., Morizumi, A., Horiuchi, K., and Murakami, Y., 1982. Matrix effects on epithermal NAA of various kinds of reference materials, J. Radioanal. Chem. 72: 377–391.Google Scholar
  156. Nakamura, Y., Hasegawa, Y., Tonogai, Y., Kanamoto, M., Tsuboi, N., Murakami, K, and Ito, Y., 1991. Method for analysis of dysprosium, europium, ytterbium and yttrium from biological materials, Jpn. J. Toxicol. Environ. Health 37:28–38 (Japanese).Google Scholar
  157. Ng, K. C., Simeonsson, J.B., and Winefordner, J. D., 1991. Laser excited atomic and ionic fluorescence of metal vapors in ICP, in: Proc. Internat. Conf. on Lasers (D. G. Harris and J. Herbelin, eds.), STS Press, McLean, pp. 634–641.Google Scholar
  158. Nirel, P, Thomas, A. J., and Martin, J. N., 1986. A critical evaluation of sequential extraction technique in: Speciation of Fission and Activation Products in the environment (R. A. Bulman and J. R. Cooper, eds.), Elsevier, London, pp. 19–26.Google Scholar
  159. Nomura, K., Mikami, A., Kato, T., and Oka, Y., 1970. The determination of scandium and gold in meteorites, tektites and standard rocks by NAA with an interference method, Anal. Chim. Acta 51:399–408.Google Scholar
  160. Okamoto, K. H., 1980. Preparation, Analysis and Certification of Pepperbush, National Institute for Environmental Studies, Korivama.Google Scholar
  161. Okoshi, K., 1993. Application of synchrotron radiation to the characterization of biominerals, Radioisotopes 25:661–666 (Japanese).Google Scholar
  162. Omenetto, N., and Winefordner, J. D., 1985. Scattering in atomic fluorescence flame spectroscopy, Prog. Anal. Atom. Spectr. 8:371–449.Google Scholar
  163. Onishi, H., 1989. Photometric Determination of Traces of Metals, John Wiley and Sons, New York.Google Scholar
  164. Otruba, V., and Sommer, L., 1989. Determination of aluminum, scandium and REE by emission flame spectrometry, Fresenius J Anal. Chem. 335:887–892.Google Scholar
  165. Oughton, D. H., and Davy, J. E, 1993. Determination of cesium, rubidium, and scandium in biological and environmental materials by NAA, J. Radioanal. Nucl. Chem. 174:177–185.Google Scholar
  166. Paisner, J. A., 1988. Atomic vapor laser isotope separation, Appl. Phys. 46B:253–260.Google Scholar
  167. Panday, V. K., Becker, J. S., and Dietze, H.-J., 1995. Trace analysis of REE and other impurities in high purity scandium by ICP-MS after liquid-liquid extraction of the matrix, Fresenius J. Anal.Chem. 352:327–334.Google Scholar
  168. Papp, S., Rutzke, M., and Martonosi, A. N., 1985. The effect of chelating agents on the elemental composition of sarcoplasmic reticulum, Arch. Biochem. Biophys. 243:254–263.Google Scholar
  169. Parry, S. J., 1991. Activation Spectrometry in Chemical Analysis, John Wiley and Sons, New York. Parsons, M. L., Forster, A., and Donn, A., 1980. An Atlas of Spectral Interferences in ICP Spectroscopy, Plenum Press, New York.Google Scholar
  170. Pietra, R., Sabbioni, E., Gallorini, M., and Orvini, E., 1986. Environmental, toxicological and biomedical research on trace metals. Radiochemical separation for NAA, J. Radioanal Nucl. Chem. Art. 102:69–98.Google Scholar
  171. Pietrelli, L., Mausner, L. F., and Kolsky, K. L., 1992. Separation of carrier-free 47Sc from titanium targets, J. Radioanal. Nucl. Chem. 157:335–345.Google Scholar
  172. Pineda, C. A., and Peisach, M., 1988. Matrix corrections for the determination of trace elements in thick biological samples by PIXE, Nucl. Instrum. Meth. Phys. Res. 35B:344–348.Google Scholar
  173. Preston, J. S., 1994. Solvent extraction of the trivalent lanthanides and yttrium by some 2-bromoalkanoic acids, Solvent Extr. Ion Exch. 12:29–54.Google Scholar
  174. Pringle, T. G., and Jervis, R. E., 1987. Multielement correlations for airborne particulate source attribution, J. Radioanal. Nucl. Chem. Art. 110:321–332.Google Scholar
  175. Qureshi, M., ed., 1987. Handbook of Chromatography, Vol. I-Inorganic, CRC Press, Boca Raton.Google Scholar
  176. Qureshi, M., and Varshney, K. G., eds., 1991. Inorganic Ion Exchangers in Chemical Analysis, CRC Press, Boca Raton.Google Scholar
  177. Ramendik, G. I., 1990. Elemental analysis without standard reference samples. The general aspect and the realization in SSMS and LMS, Fresenius J. Anal. Chem. 337:772–776.Google Scholar
  178. Rane, A. T., and Bhatki, K. S., 1966. Rapid radiochemical separation of 90Sr-90Y and 90Ca-46Sc on a cation exchange resin, Anal. Chem. 38:1598–1601.Google Scholar
  179. Robinson, J. W, 1990. Atomic Spectroscopy, Marcel Dekker, New York.Google Scholar
  180. Robinson, J. W., ed., 1991. Practical Handbook of Spectroscopy, CRC Press, Boca Raton.Google Scholar
  181. Rogero, S. O., Saiki, N., Saldiva P. H. N., and Daliberto, N. L., 1994. Determination of trace elements in human lung samples, Biol. Trace Elem. Res. 41:489–494.Google Scholar
  182. Rösch, N., Totland, N., Jarvis, I., and Jarvis, K. E., 1993. An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry, Chem. Geol. 95:35–62.Google Scholar
  183. Rossbach, M., and Stoeppler, M., 1988. Multielement fingerprints for characterization earthworm samples front the environmental specimens bank of the RFG, Fresenius J Anal. Chem. 332:636–639.Google Scholar
  184. Ruzicka, J., and Hansen, E. H., 1988. Flow Injection Analysis, John Wiley and Sons, New York.Google Scholar
  185. Ryabukhin, Yu. S., 1980. International coordinated program on activation analysis of trace element pollutants in human hair, in: Hair, Trace Elements,and Human Illness (A.C. Brown and R. G. Crounse, eds.), Praeger, Westport, pp. 1–71.Google Scholar
  186. Saiki, M., Nastasi, M. J. C., and Lima, E W, 1981. Use of tetracycline as complexing agent in radiochemical separations, J. Radioanal. Chem. 64:83–116Google Scholar
  187. Saiki, M., Vasconcellos, M. B. A., Maihara, V. A., Armelin, H.J.A., Favaro, D. I. T., and Rogero, S. O., 1994. NAA of biological samples at the radiochemistry division of IPEN-CNEN.SP, Biol. Trace Elem. Res. 41:517–525.Google Scholar
  188. Saleh, M. S., 1995. Spectrophotometric determination of microamounts of yttrium with 1-amino-4hydroxyanthraquinone, Monatsh. Chem. 126:621–629.Google Scholar
  189. Satake, K., Iwatsuki, Z., and Nishikawa, M., 1984. Inorganic elements in some aquatic Bryophytes from Caledonia, J. Hattori Bot. Lab. 57:71–82.Google Scholar
  190. Sato, T., 1986. NAA of laboratory animals diets, Radioisotones 35:24–27 (Japanese).Google Scholar
  191. Schmelzer, W, and Behne, D., 1975. Application of isoelectric focusing in the determination of protein bound trace elements, in: Pmgress in Isoelectric Focusing and Isotachophoresis (PG. Rightetti, ed.), North-Holland Publishers, Amsterdam, pp. 257–264.Google Scholar
  192. Schrenk, W. G., 1975. Analytical Atomic Spectroscopy, Methods and Applications, John Wiley and Sons, New York.Google Scholar
  193. Schulman, S. G., 1985. Molecular Luminescence Spectroscopy, Methods and Applications, John Wiley and Sons, New York.Google Scholar
  194. Schulten, H.-R., Bahr, U., and Palavinskas, R., 1984. New method for MS trace analysis of metals in biology and medicine, Fresenius J. Anal. Chem. 317:497–511 (German).Google Scholar
  195. Segebade, C., Weise, H.-P., and Lutz, G. J., 1984. Photon Activation Analysis, de Gruyter, Berlin.Google Scholar
  196. Sen Gupta, J. G., 1985. Determination of rare earths yttrium and scandium in silicate rocks and four new geological reference materials by electrothermal atomization from graphite and tantalum surfaces, Talanta 32:1–6.Google Scholar
  197. Serdobova, L. I., and Bolshakova, N. A., 1995. Method for spectrographic determination of rare-earth elements, yttrium, scandium, niobium, zirconium, and hafnium in alkaline minerals and rare earth ores, Russian patent 1005555. CA 123:328772r.Google Scholar
  198. Serjeant, E. P. 1984. Potentiometry and Potentiometric Titrations, John Wiley and Sons, New York.Google Scholar
  199. Seubert, A., 1993. One-line coupling of atomic emission spectrometry and ion chromatography with time resolved registration as a new tool for ultra trace analysis in refractory metals, Fresenius J. Anal. Chem. 345:547–563.Google Scholar
  200. Shekhovtsova, T. N., Pirogova, S. V., Fedorova, O. M., Dolmanova, I. F., and Baikov, A. A., 1993. Enzymatic method of determining rare earth elements using pyrophosphatases, Russian J. Anal. Chem. 48:370–375.Google Scholar
  201. Sidhu, N. P. S., Mittál, V. K., and Sahota, H. S., 1987. A comment on the NAA of trace elements in cancerous breast tissue, Indian J. Phys. 61A:170–172.Google Scholar
  202. Siriraks, A., Kingston, H. M., and Riviello, J. M., 1990. Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples, Anal. Chem. 62:1185–1193.Google Scholar
  203. Sisson, T. W, 1991. Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe, Geochim. Cosmochim. Acta 55:1575–1585.Google Scholar
  204. Soloway, A. K., Balcius, J. E, and Ojemann, R. G., 1963. Separation of 49Sc from a calcium target, Int. J. Appl. Radial. Isot. 14:245–249;.Google Scholar
  205. Stettler, L. E., Groth, D. H., and Platek, S. E, 1983. Automated characterization of particles extracted from human lungs. Three cases of tungsten carbide exposure, Scann. Electron. Microsc. pp. 439–448.Google Scholar
  206. Stone, S. E, Freitas, M. C., Parr, R. M., and Zeisler, R., 1995. Elemental characterization of candidate lichen research material IAEA 336, Fresenius J Anal. Chem. 352:227–231.Google Scholar
  207. Su, Q., 1991. Yttrium, its separation and applications. in:Rare Earth Minerals and Minerals for Electronic Uses,Proc. Intern. Conf., Hatya, pp. 421–425.Google Scholar
  208. Suzuki, S., and Hirai S., 1991 Trace elements in National Institute for Environmental Studies, Standards Reference Materials, in: Biological Trace Elements Research (K.S. Subramanian et al., eds.), ACS, Washington, pp. 221–239.Google Scholar
  209. Talbot, V., and Chang, W J., 1987. Rapid multielement analysis of oyster and cockle tissue using X-ray fluorescence spectrometry, with application to reconnaissance marine pollution investigation, Sci. Total Environ. 66:213–223.Google Scholar
  210. Taylor, H. E., and Garbarino, J. R., 1992. Analytical applications of ICP-MS, in: ICP in: Analytical Atomic Spectrometry (A. Montaser and D. W Golightly, eds), VCH,New York, pp. 651–676.Google Scholar
  211. Thompson, M., and Walsh, J. N., 1989. Handbook of Inductively Coupled Plasma Spectrometry, Blackie, Glasgow.Google Scholar
  212. Tölg, G., 1992. The role of trace elements for life from the point of view of an analytical chemist in: Metal Compounds in Environment and Life (E. Merian and W Haerdi, eds.), Science Technology Letters, Northwood, pp.1–22.Google Scholar
  213. Tölgyessy, J., and Kyrs, H., 1989. Radioanalytical Chemistry, Ellis Horwood, Chichester.Google Scholar
  214. Tout, R. E., and Chatt, A., 1980. A critical evaluation of short-lived and long-lived neutron activation products for trace element determinations. Anal. Chim. Acta 118:341–358.Google Scholar
  215. Truglio, N. L., and Guinn, V. P., 1987. Elements very rapidly measurable by INAA in biological and environmental materials, J. Radioanal. Nucl. Chem. Art. 110:41–45.Google Scholar
  216. Tsumura, A., and Yamasaki, S., 1992. Direct determination of REE and actinides in fresh water by double-focusing and high resolution ICP-MS, Radioisotopes 41:185–192 (Japanese). CA 6:262155p.Google Scholar
  217. Tu, S.-D., and Lieser, K. H., 1984. Multi-element analysis of Chinese biological standard reference materials by monostandard INAA, J. Radioanal. Nucl. Chem. Art. 81:345–352.Google Scholar
  218. Turnock, W. J., Gerber, G. H., and Sabourin, D. U., 1980. An evaluation of the use of elytra and bodies in x-ray energy dispensing spectroscopy studies in the red turnip beetle Ontomocelis americana, Entomol. 112:609–614.Google Scholar
  219. Uchida, H.; Kosinski, M. A., Omenetto, N., and Winefordner, J., D., 1984. Studies on lifetime measurements and collisional processes in an argon ICP using laser induced fluorescence, Spectmchim. Acta 39B:63–68.Google Scholar
  220. Urena Pozo, M. E., Garcia de Torres, A., Cano Pavon, J. M., and Sanchez Rojas, E, 1991. Sensitive and selective fluorimetric determination of scandium with salicylaldehyde carbohydrazone, Analyst 116:757–760.Google Scholar
  221. Valcarcel, M., and Luque de Castro, M. D., 1988. Automatic Methods of Analysis, Elsevier, Amsterdam.Google Scholar
  222. Valkovic, V, 1989. X-Ray Spectroscopy in Environmental Sciences, CRC Press, Boca Raton. Vandecasteele, C., and Block, C. B., 1993. Modern Methods for Trace Element Determination, John Wiley and Sons, Chichester.Google Scholar
  223. Versieck, J., Barbier, E, Cornelis, R., and Hoste, J., 1982. Sample contamination as a source of error in trace element analysis of biological samples, Talanta 29:973–984.Google Scholar
  224. Vertes, A., Gijbels, R., and Adams, E, eds., 1993. Laser Ionization Mass Analysis, John Wiley and Sons, New York.Google Scholar
  225. Wang, C. M., and Fu, X. T., 1993. Polarographic and voltammetric study of Sc3+-acid chrome blue K complex and determination of trace scandium, Anal. Let. 26:2203–2215.Google Scholar
  226. Wang, S. R., and Wu, X. J., 1985. Study on capillary gas chromatography behavior of rare earths chelates of TPM, in: New Frontiers in Rare Earth Science and Applications(G. X. Xu and J. M. Ziao, eds.), Science Press, Beijing, pp. 569–572.Google Scholar
  227. Wang, X., Lasztity, A., Viczian, M., Israel, Y., and Barnes, R. M., 1989. ICP spectrometry in the study of childhood soil ingestion, J. Anal. Atom. Spectr. 4:727–742.Google Scholar
  228. Wang, X. R., and Barnes, R. M., 1989. Chelating resins for on-line flow injection pre-concentration with ICP-AES, J. Anal. Atom. Spectr. 4:509–518.Google Scholar
  229. Watanabe, K., Kamagata, T, and Itagaki, N., 1995. Solvent extraction fluorimetric determination of scandium and yttrium with 2-hydroxy-5-methylbenzaldehyde semicarbazone, Bunseki Kagaku 44:609–615.Google Scholar
  230. Watkins, P. J., and Nolan, J., 1992. Determination of REE, yttrium, scandium and hafnium using cation-exchange separation and ICP-AES, Chem. Geol. 95:131–139.Google Scholar
  231. West, T. S., ed., 1973. Analytical Chemistry, Butterworths, London.Google Scholar
  232. Williams, C. T., and Potts, P. J., 1988. Element distribution maps in fossil bones, Archeometry 30:237–247.Google Scholar
  233. Willis, J, P., 1983. Trace element studies on South African coals and fly ash, Spec. Publ. Geol. Soc. S. Afr. 7:129–135.Google Scholar
  234. Wilson, C.L., and Wilson, D. W, 1959–1990. Comprehensive Analytical Chemistry, Elsevier, Amsterdam, Vols. 1–29.Google Scholar
  235. Winefordner, J. D., Smith, B.W., and Omenetto, N., 1989.Theoretical considerations of laser induced fluorescence and ionization spectrometry: How close to single atom detection, Spectrochim. Acta 44B:1397–1403.Google Scholar
  236. Winge, R. K., Fassel, V. A., Peterson, V. J., and Floyd, M.A., 1985. ICP-AES, An Atlas of Spectral Information, Elsevier, Amsterdam.Google Scholar
  237. Wise, S. A., Schantz, M. M., Koster, B. J., Demiralp, R., Mackey, E. A., Greenberg, R. R., Burow, M., Istapczuk, E, and Lillestolen, T. I., 1993. Development of frozen whale blubber and liver reference materials for the measurement of organic and inorganic contaminants, Fresenius J. Anal. Chem. 345:270–277.Google Scholar
  238. Woittiez, J. R. W, and Iyengar, G. V, 1988. The use of neutron activation in dietary reference material analysis, Fresenius J. Anal. Chem. 332:657–661.Google Scholar
  239. Wood, D. J., Elshani, S., Du, H. S., Natale, N. R., and Wai, L. N., 1993. Separation of 90Y from 905r by solvent extraction with ionizable crown ethers, Anal. Chem. 65:1350–1354.Google Scholar
  240. Wu, J., Boyle, T. J., Shreeve, J. L., Ziller, J. W, and Evans, W. J., 1993. CP-MAS 89Y spectroscopy. A facile method for characterizing yttrium-containing solids, Inorg. Chem. 32:1130–1134.Google Scholar
  241. Wyttenbach, A., Bajo, S., Tobler, L., and Zimmerli, B., 1987. The concentration of 19 trace elements in the Swiss diet, in: Trace Element. Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schrammel, eds.), Walter de Gruyter, Berlin, Vol. 4, pp. 171–179.Google Scholar
  242. Xu, Y. J., Chen, X.G, and Hu, Z. D., 1987. The spectrophotometric determination of scandium in Eriochrome cyanine R(Chrome azurol 5)-phosphatidyl choline system, Anal. Lett. 20:1001–1011.Google Scholar
  243. Yagi, M., and Kondo, K., 1977. Preparation of carrier-free47Sc by the 48Tic (y, p) reaction, Int. J. Appl. Radial. Isot. 28:463–468.Google Scholar
  244. Yamamoto, K., 1987. New Metals Data Book,Kinjaku-Jihyo, Kobe (Japanese).Google Scholar
  245. Yamamoto, T., Otsuka, Y., Aoyama, K., and Okamoto, K., 1984. Character of each element on its distribution in seaweeds, Hydrobiol. 116:510–512.Google Scholar
  246. Yamasaki, S., and Tsumura, A., 1992, Determination of ultra-trace levels of elements by high resolution ICP-MS with an ultrasonic nebulizer, Wat. Sci. Techn. 25:205–212.Google Scholar
  247. Yang, X.-J., Gu, Z.-M., and Wang, D.-X., 1995. Extraction separation of scandium from rare earths by electrostatic pseudo liquid membrane, J. Membrane Sci. 106:131–145.Google Scholar
  248. Yoshida, K., and Haraguchi, H., 1984. Determination of rare earth elements by liquid chromatographyICP-AES, Anal.Chem. 56:2580–2585.Google Scholar
  249. Yoshinaga, J., Matsuo, N., Imai, H., Nakazawa, M., and Suzuki, T., 1990. Application of ICP-MS to multi-element analysis of human organs, Intern. J. Environ. Anal. Chem. 41:27–38.Google Scholar
  250. Zachmann, D. W, 1988. Matrix effects in the separation of REE, scandium and yttrium and their determination by ICP optical AES, Anal. Chem. 60:420–427.Google Scholar
  251. Zaichick, V. Y., 1995. Application of synthetic reference materials in the Medical Radiological Research Center, Fresenius J Anal. Chem. 352:219–223.Google Scholar
  252. Zeisler, R., Becker, D. A., and Gills, T. E., 1995. Certifying the chemical composition of a biological material. A case study, Fresenius J. Anal. Chem. 352:111–113.Google Scholar
  253. Zolotov, Yu. A., and Kuz’min, N. M., 1990. Preconcentration of Trace Elements, Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Chaim T. Horovitz
    • 1
  1. 1.RehovotIsrael

Personalised recommendations