Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 13A))

  • 246 Accesses

Abstract

Early investigations of scandium and yttrium depended on rather unsatisfactory analytical methods. Due to a lack of interest in these elements progress in their analysis was relatively slow. During the last two decades there was an obvious increase of research into their biological significance and applications. The sophistication of instrumentation and changes in the concepts of analytical chemistry (Tölg, 1992) now offer increased sensitivity and selectivity in trace and ultra-trace analysis. The analysis of scandium and yttrium in various matrices is of increasing importance in numerous fields of applications in medicine, biological sciences, technology, and in environmental problems. Details about the analytical chemistry of these elements are contained in monographs (Wilson and Wilson, 1959-1990;Crompton, 1989;Vandecasteele and Block,1993; Herber and Stoeppler, 1994;Alfassi, 1994), or such works devoted to specific methods of analysis. Earlier works on the analytical chemistry of these elements were reviewed (Busev et al., 1970;Horovitz, 1975). Also, patents were assigned solely to scandium and yttrium, or jointly with other elements a (Kamei and Okushita, 1989; Degtev et al., 1989;, Herchenröder and Burkholder, 1990).

I wouldn’t trust any numbers earlier than 1983, even if they were analyzed by my mother.

Letter from an undisclosed analytical chemist

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, J., 1982. Determination of thorium and scandium by indirect chronopotentiometric stripping analysis, Talanta 29:939–940.

    CAS  Google Scholar 

  • Ahuja, S., 1992. Trace and ultratrace Analysis by HPLC, John Wiley and Sons, New York, pp. 303–398.

    Google Scholar 

  • Alfassi, Z. B., ed., 1990. Activation Analysis, CRC Press, Boca Raton, Vols. 1 and 2.

    Google Scholar 

  • Alfassi, Z. B., ed., 1994. Determination of Trace Elements, VCH, Weinheim.

    Google Scholar 

  • Alimarin, I. P, Fadeeva, V. I., Kudryavtsev, G. V, Loskutova, I. M., and Tikhomirova, T. I., 1987. Concentration, separation and determination of scandium, zirconium, hafnium and thorium with a silica-based sulfonic acid cation-exchanger, Talanta 34:102–110.

    Google Scholar 

  • Amato, I., 1993. Analytical titans gather at Pittcon to predict the future, Science 259:1260–1261.

    CAS  Google Scholar 

  • Arabidze, G. G., Burkitaev, S. M., Bykovski, Yu.- A., Kutzenko, A. I., Laptev, I. D., Manykin, E. A.,Petrenko, E. A., and Timoshin, V. T., 1985. Element analysis of sclerotic formations of large blood vessels by laser MS, Biofizika 30:655–660 (Russian).

    CAS  Google Scholar 

  • Bächmann, K., 1966. The-use of high-voltage electrophoresis for the separation of radioactive nuclides, Z. Anal. Chem. 218:321–338 (German).

    Google Scholar 

  • Barnes, R. M., 1984. Determination of trace elements in biological materials by ICP spectroscopy with novel chelating resins, Biol. Trace Elem. Res. 6:93–103.

    CAS  Google Scholar 

  • Batley, G. E., 1989. Trace Element Speciation. Analytical Methods and CRC. Press, Boca Raton.

    Google Scholar 

  • Bautista, R. G., 1995. Separation chemistry, in: Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, pp. 1–27.

    Google Scholar 

  • Beliveau, R., Gelinas, Y., Ferraris, J., and Schmit, J. P., 1990. Complete analysis of the trace elements of the kidney, Biochem. Cell Biol. 68:1272–1280.

    CAS  Google Scholar 

  • Benninghoven, A., Ruedenauer, F. G., and Werner, H. W, eds., 1987. Secondary Ion Mass Spectrometry, John Wiley and Sons, New York.

    Google Scholar 

  • Bettinelli, M., and Spezia, S., 1995. Determination of REE in sea water by IC-ICP-MS, Atom. Spectr. 133–138.

    Google Scholar 

  • Bhilare, N. G. and Shinde, V. M., 1996. Liquid-liquid extraction and separation studies of yttrium, Fresenius J. Anal. Chem. 354:122–124.

    CAS  Google Scholar 

  • Bishop, E., ed, 1972. Indicators, Pergamon Press, Oxford.

    Google Scholar 

  • Boerma, D. O., Smit, E. P, and Roosnek, N., 1989. PIXE trace elements determination and its accuracy in the analysis of bile, Nucl. Instrum. Methods Phys. Res. 36B:60–73.

    Google Scholar 

  • Boumans, P. W. J. M., ed., 1987. ICP Emission Spectroscopy, John Wiley and Sons, New York, Part 2.

    Google Scholar 

  • Brand, L., and Johnson, M. L., eds., 1992. Numerical computer methods, in: Methods in Enzymology, Vol. 210, Academic Press, San Diego.

    Google Scholar 

  • Braun, T., and Zsindely, S., 1991. Trends and tendencies in instrumental analysis technique with special emphasis on environmental analysis, Rev. Roum. Chim. 36:481–506.

    CAS  Google Scholar 

  • Briden, E, and Lewis, D., 1981. Reliability of spark source MS for environmental assessment, Int. J. Environ. Anal. Chem. 9:249–264.

    CAS  Google Scholar 

  • Buchtela, K., Grass, E, and Müller, G., 1975. Radio-gaschromatography of metal chelates, J. Chromatogr. 103:141–151 (German).

    CAS  Google Scholar 

  • Bünzli, J. C. G., 1989. Luminescent probes, in: Lanthanide Probes in Life, Chemical and Earth Sciences (J. C. G. Bünzli and G. R. Chopin, eds.), Elsevier, Amsterdam, pp. 219–299.

    Google Scholar 

  • Burn, D. T., Townshend, D. T., and Carter, A. H., 1980. Inorganic Reactions Chemistry, Ellis Horwood, New York, Vol. 2, Part B.

    Google Scholar 

  • Busev, A. I., Tiptsova, V. G., and Ivanov, V. M., 1970. Handbook of the Analytical Chemistry of Rare Elements, Arm Arbor-Humphrey Sci. Publ., Ann Arbor.

    Google Scholar 

  • Bykhovtsova, T. T., and Bykhovtsova, I. V, 1987. Spectrophotometric determination of scandium using xylenol orange with prior concentration and separation from interfering elements by precipitation with oxalic acid, J Anal. Chem. USSR 42:991–995.

    Google Scholar 

  • Cai, R., Huang, H., Wang, G., and Zeng, Y., 1994. Study and analytical application of rare earth inhibition of laccase, Talanta 41:735–738.

    CAS  Google Scholar 

  • Caletka, R., Hausbeck, R., and Krivan, V., 1990. Retention behavior of some tri-to hexavalent elements on Dowex 1 and polyurethane foam from HCl-KSCN medium, Anal. Chim. Acta 229:127–138.

    CAS  Google Scholar 

  • Cano Pavon, J. M., Bosch Ojeda, C., Garcia de Torres, A., and Salgado Ordonez, M., 1990. Fluorimetric determination of trace amounts of scandium with di-2-pyridyl-ketone 2furoylhydrazone, Anal. Lett. 23:1553–1564.

    Google Scholar 

  • Carmo Freitas, N., 1993. Element concentrations in candidate biological and environmental reference materials by K0-standardized INAA, Fresenius J. Anal. Chem. 345:304–307.

    CAS  Google Scholar 

  • Cerda, V., and Ramis, G., 1990. An Introduction to Laboratory Automation, John Wiley and Sons, New York.

    Google Scholar 

  • Chai, C. F., 1993. Present status and future trends in biological and environmental reference materials in China, Fresenius J Anal. Chem. 345:93–98.

    CAS  Google Scholar 

  • Chatt, A., DeSilva, K. N., Holzbecher, J., Stuart, D. C, Tout, R. E., and Ryan, D. E., 1981. Cyclic NAA of biological and metallurgical samples, Can. J. Chem. 59:1660–1664.

    CAS  Google Scholar 

  • Chatt, A., Dang, H. S., Fong, B. B., Jayawickreme, C. K., McDowell, L. S., and Pegg, D. L., 1988. Determination of trace elements in food by NAA J. Radioanal. Nuclear Chem. Art. 124: 65–77.

    CAS  Google Scholar 

  • Chiba, M., Shinohara, A., Saiki, M., and Inaba, Y., 1994. Comparative study of methods for determining lanthanide elements in biological materials by using NAA, HPLC postcolumn reaction, and ICP-MS, Biol. Trace Elem. Res. 7:561–569.

    Google Scholar 

  • Chisela, E, Gawlik, D., and Brauer, P, 1986. Instrumental determination of some trace elements in biological materials by epithermal and thermal INAA, Analyst 111:405–410.

    CAS  Google Scholar 

  • Chuang, J. T., and Lo, J. G.., 1996. Extraction chromatographic separation of carrier-free 90Y from 90Sr/90Y generator by crown ether-coated silica gels. J. Radioanal. Nucl. Chem. 204:83–93.

    CAS  Google Scholar 

  • Claessens, R. A. M. J., Janssen, A. G. M., Van den Bosch, R. L. E, and De Goeij, J. J. M., 1986. The 87Y/87mY generator. A new approach to its-preparation, in: Progress in Radiopharmacy (P. H. Cox et al., eds.), Martinus Nijhoff Publ., Dordrecht, pp. 46–63.

    Google Scholar 

  • Clement, R. E., ed, 1990. Gas Chromatography, Biochemical,Biomedical, and Clinical Applications, John Wiley and Sons, New York.

    Google Scholar 

  • Cohen, D. D., and Clayton, E., 1987. A database for thick target PIXE, Nuclear Instr. Meth. Phys. Res. 22B:59–63.

    Google Scholar 

  • Cornelis, R., 1989. Methods of inorganic analysis and detection application to biological samples, in: Nutrient Availability. Chemical and Biological Aspects (D. A. T. Southgate et al., eds.), Royal Society of Chemistry, London, pp. 51–59.

    Google Scholar 

  • Cortes Toro, E., Parr, R. M., and Clements, S. A. 1990. Biological and environmental reference materials for trace elements nuclides and organic micro-contaminants, IAEA Survey RL, Vienna.

    Google Scholar 

  • Cowgill, U., 1989. The chemical and mineralogical content of the plants of Lake Huleh Preserve, Israel, Phil. Trans. Roy. Soc. London 326B:59–118.

    Google Scholar 

  • Crompton, T. R., 1989. Analysis of Seawater, Butterworths, London.

    Google Scholar 

  • Daniel, H., 1987. Application of muonic x-rays for elemental analysis, Biol. Trace Elem. Res. 13:301–318.

    CAS  Google Scholar 

  • Date, A. R., and Jarvis, K. E., 1989. Application of ICP-MS in the earth sciences, in: Applications of Inductively Coupled Plasma Mass Spectrometry (A. R. Date and A. L. Gray, eds.), Blackie, Glasgow, pp. 43–70.

    Google Scholar 

  • Dean, J. A., 1995. Analytical Chemistry Handbook. McGraw-Hill, Inc., New York.

    Google Scholar 

  • De Bruin, M., and Van Wijk, P. M., 1988. Trace elements patterns obtained by INAA as a basis for source identification, J. Radioanal. Nucl. Chem. Art. 123:227–238.

    Google Scholar 

  • Degtev, M. I., Petrova, E. N., and Khorkova, M. A., 1989. Method for separating scandium and yttrium, USSR patent 1479420.

    Google Scholar 

  • Deorkar, N. V, and Khopkar, S. M., 1991. Separation of scandium using liquid-liquid extraction with macrocyclic polyether(s) from picrate media, Bull. Chem. Soc. Jpn. 64:1962–1965.

    CAS  Google Scholar 

  • DeSilva, K. N., and Chatt, A., 1982–1983. A method to improve precision and detection limits for measuring trace elements through short-lived nuclides, J Trace Microrpobe Techn. 1:307–337.

    CAS  Google Scholar 

  • Dietz, M. L. and Horwitz, E. P., 1992. Improved chemistry for the production of 90Y for medical applications, Appl. Radiat. Isot. 43:1093–1101.

    CAS  Google Scholar 

  • Du, H. S., Dong, G. Z., Yang, X. I., Li, G. H., and Wai, C. M., 1995. Development of a method for the preparation of highly purified 90Y, Microchem. J. 52:213–235.

    Google Scholar 

  • Durrant, S. E, and Ward, N. I., 1993. Rapid multi-element analysis of Chinese reference soils by laser ablation ICP-MS, Fresenius J. Anal. Chem. 345:512–517.

    CAS  Google Scholar 

  • Dytnersky, Yu. I., Volcheck, K. A., and Polyanskaya, N. B., 1991. Separation of multicomponent solutions using reagent ultrafiltration, Desalination 81:273–279.

    Google Scholar 

  • Ehmann, W. D., and Vance, D. E., 1991. Radiochemistry and Nuclear Methods of Analysis, John Wiley and Sons, New York.

    Google Scholar 

  • Faanhof, A., Das, H. A., and Zonderhuis, J., 1980. Possibilities of the elemental analysis of dry biological material by fast NAA, J. Radioanal. Chem. 56:173–184.

    CAS  Google Scholar 

  • Fassett, J. D., 1987, personal communication, with permission.

    Google Scholar 

  • Fasett, J. D., Moore, L. J., Travis, J. C., and Devoe, J. R., 1985. Laser resonance ionization MS, Science 230:262–267.

    Google Scholar 

  • Fedorowich, J. S., Richards, J. E, Jain, J. C., Kerrich, R., and Fan, J., 1993. A rapid method for REE and trace elements analysis using laser sampling ICP-MS on direct fusion whole-rock glasses, Chem. Geol. 106:229–249.

    CAS  Google Scholar 

  • Fey, W, and Lieser, K. H., 1993. Quality control of rare earth compounds by multielement analysis without chemical separation, Fresenius J. Anal. Chem. 346:896–904.

    CAS  Google Scholar 

  • Foldiak, G., ed., 1986. Industrial Applications of Radioisotopes, Elsevier, Amsterdam.

    Google Scholar 

  • Gao X., 1986. Polarographic analysis of REE, in: Handbook of the Physics and Chemistry of Rare Earths (K. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, Vol. 8, pp. 163–201.

    Google Scholar 

  • Garcia Sanchez F., Cruces Bianco, C., and Heredia Bayona, A., 1987. Non-aqueous fluorimetric determination of scandium in silicate rocks, Talanta 34:345–350.

    CAS  Google Scholar 

  • Georgi, J. R., 1982. Schistosoma mansoni: Quantification of skin penetration and early migration by differential external radioassay and autoradiography, Parasitol. 84:263–281.

    CAS  Google Scholar 

  • Gladney, E. S., 1980. Elemental concentrations in NBS biological and environmental standard reference materials, Anal. Chim. Acta 118:385–396.

    CAS  Google Scholar 

  • Grau Malonda, A., Rodriguez Bárguero, L., and Grau Carles, A., 1994. Radioactivity determination of 99Y 90Sr and 89Sr mixtures, Nuclear Instr. Meth. Phys. Res. A39:31–37.

    Google Scholar 

  • Gray, A. L., 1989. The origins, realization and performance of ICP-MS systems, in: Applications of ICP-MS (A. R. Date and A. L. Gray, eds.), Blackie, Glasgow, pp. 1–42.

    Google Scholar 

  • Greenberg, R. R., Kingston, H. M., Watters, R. L., Jr., and Pratt, K. W, 1990. Dissolution problems with botanical reference materials, Fresenius J. Anal. Chem. 338:394–398.

    CAS  Google Scholar 

  • Grime, G., Watt, F, and Sutton, C., 1991. Microscope with proton power, New Scientist June 1, pp. 14.

    Google Scholar 

  • Guilbault, G. G., ed. 1990. Practical Fluorescence, Marcel Dekker, New York.

    Google Scholar 

  • Guinn, V. P., and Gavrilas, M., 1990. Biological and environmental materials in NAA work, Fresenius J. Anal. Chem. 228:551–553.

    Google Scholar 

  • Haddad, P. R., and Jackson, P. E., 1990. Ion Chromatography. Principle and Applications, Elsevier, Amsterdam.

    Google Scholar 

  • Hafez, M. A. H., and Emam, M. S. M., 1986. Photometric micro-determination of scandium and lanthanides by direct and successive titration using semi-xylenol orange, Analyst 111:1435–1438.

    CAS  Google Scholar 

  • Hamaguchi, H., Onuma, N., Kishi, M., and Kuroda, R., 1964. Anion-exchange behavior of scandium, Talanta 11:495–500.

    Google Scholar 

  • Hamly, J. M., Styris, D. L., and Rigby, P. G., 1993. Discharges with graphite furnace atomizers, in: Glow Discharge Spectroscopies (R. K. Marcus, ed.), Plenum Press, New York, pp. 373–420.

    Google Scholar 

  • Harrison, W. W, and Donohue, D. L., 1989. Spark source spectrometry in: Treatise on Analytical Chemistry (J. D. Winefordner, ed.), John Wiley and Sons, New York, Vol. 11, pp. 189–235.

    Google Scholar 

  • Herber, R. E. M., and Stoeppler, M., eds., 1994. Trace Element Analysis in Biological Specimens Elsevier, Amsterdam.

    Google Scholar 

  • Herchenröder, L. A., Burkholder, H., Beaudry, B. J., and Schmidt, E A., 1989. Chelate additives and the purification of scandium by displacement ion-exchange chromatography, J. Less-Common Metals 155:37–43.

    Google Scholar 

  • Herchenröder, L. A., and Burkholder H. 1990. Ion exchange purification of scandium, US Patent 4965053. CA 114:26672T.

    Google Scholar 

  • Hergenröder, R., and Niemax, K., 1989. Atomic absorption spectroscopy with tunable semiconductor diode lasers, Trends Anal. Chem. 8:333–335.

    Google Scholar 

  • Heydom, K., 1984. Neutron Activation Analysis for Clinical Trace Element Research, CRC Press, Boca Raton, Vols. 1 and 2.

    Google Scholar 

  • Hirokawa, T., Wen, X., and Kiso, Y., 1995. Isotachophoretic separation of rare earth ions. 1. Separation behavior of yttrium and 14 lanthanide ions forming complexes with tartaric acid and a-hydroxyisobutyric acid, J. Chromatogr. A 689:149–156.

    Google Scholar 

  • Hirunuma, R. et al., 1995. Multitracer studies of behavior in rats and mice, J. Inorg. Biochem. 59:534.

    Google Scholar 

  • Hoffmann, P, Lieser, K. H., Abig, S., Stingi, U., and Pilz, N., 1989. Contamination of water in a chemical laboratory. Impurities in plastic foils and quartz ampoules and their influence on analytical results, Fresenius J. Anal. Chem. 335:847–851.

    CAS  Google Scholar 

  • Honda, M., Yoneda, S., and Nagai, H., 1995. Determination of natural yttrium along with rare earths by NAA, Geochem. J. 2S:55–65.

    Google Scholar 

  • Horlick, G., and Shao, Y., 1992. ICP-MS for elemental analysis, in: ICP in Analytical Atomic Spectrometry (A. Montaser and D.W. Golightly, eds.), VCH, New York, pp. 551–612.

    Google Scholar 

  • Horovitz, C. T. 1975. Analytical chemistry of scandium, in: Scandium, Its Occurrence, Chemistry,Physics, Metallurgy, Biology and Technology (C. T. Horovitz, ed.), Academic Press, London, pp. 385–488.

    Google Scholar 

  • Horovitz, C. T., 1989, unpublished data.

    Google Scholar 

  • Horvath, Z., Lasztity, A., and Barnes, R. M., 1991. Preconcentration and separation techniques for ICP and MS analyses, Spectrom Acta 14:45–78.

    CAS  Google Scholar 

  • Houk, R. S., 1990. Elemental analysis by AES and MS with ICP, in: Handbook on the Physics and Chemistry of Rare Earths (L. A. Gschneidner, Jr. and L. Eyring, eds.), Elsevier, Amsterdam, Vol. 13, pp. 385–421.

    Google Scholar 

  • Houk, R. S., and Thompson, J. J. 1988. ICP-MS, Mass Spectr. Rev. 7:425–461.

    CAS  Google Scholar 

  • Hsu, C.-G., Liu, S.-C., and Pan, J.-M. 1995. Spectrophotometric determination of scandium based on the cocoloration effect in scandium-cerium-p-acetylchlorophosphonazo system, Talanta 42:1905–1911.

    CAS  Google Scholar 

  • Hsu, C. G., Xu, Q., and Pan, J. M., 1997. Determination of trace scandium by ion-exchange phase spectrometry with p-nitrochlorophosphonazo, Mikrochim. Acta 126:83–86.

    CAS  Google Scholar 

  • Hubicki, Z., 1989. Anion-exchange resin modified with sulfonic derivatives of organic complexing reagents as a new type of functional resin for the selective separation of Sc3+ from Y3+ and Lait Hung. J. Ind. Chem. 17:51–60.

    CAS  Google Scholar 

  • Hubicki, Z., 1990. Studies on selective separation of Sc3+ from rare earth elements on selective ion-exchangers, Hydrometal. 23:329–133.

    Google Scholar 

  • Huljev, D., 1989. Trace metals in DNA molecules obtained from wheat germs, Radio!. Iugosl. 23:213–215.

    Google Scholar 

  • Huneck, S., Bothe, H.-K., and Richter W., 1990. On the metal content of lichens from copper schist dumps of the surroundings of Mansfeld, Herzogia 8:295–304 (German).

    Google Scholar 

  • Ichihashi, H., Morita, H., and Tatsukawa, R., 1992. REE in naturally grown plants in relation to their variation in soil, Environ. Pollut. 76;157–162.

    CAS  Google Scholar 

  • Idriss, K. A. R., Hassan, M. K., Abu-Bakr, M., and Sedaira, H., 1984. Spectrophotometric study of the complexation equilibria of yttrium with quinizarin green, Analyst 109:1389–1392.

    CAS  Google Scholar 

  • Ishida, K., Ninomiya, S., Takeda, Y., and Watanabe, K., 1986. TLC behavior and separation of rare earth elements on silica gel nitrate solution, J. Chromat. 351:489–494.

    CAS  Google Scholar 

  • Iwata, Y., and Suzuki, N., 1992. Preparation of pseudo-biological reference materials containing all REE and its application to the assessment of the accuracy of rare earths determined by NAA after separation by coprecipitation, Anal. Chim. Acta 259:159-I63.

    CAS  Google Scholar 

  • Iwata, Y., Imura, H., and Suzuki, N., 1990. Selective preconcentration of rare earth elements by substoichiometric precipitation of calcium oxalate and its application to the NAA of biological material, Anal. Chim. Acta 239:115–120.

    CAS  Google Scholar 

  • Iyengar, G. V, 1995. Reference values for trace elements in human clinical specimens with special reference to biomonitoring and specimen suitability, in: Kinetic Models of Trace Elements and Mineral Metabolism During Development (K. N. Siva Subramanian and M. E. Wastney, eds.), CRC Press, Boca Raton.

    Google Scholar 

  • Iyengar, G. V, Kasperek, K., and Feinendegen, L. E., 1980. Retention of metabolized trace elements in biological tissues following different drying procedures, Analyst 105:794–780.

    CAS  Google Scholar 

  • Jarosz, M., and Marczenko, Z., 1984, Spectrophotometric study of reactions of scandium, yttrium and lanthanum ions with some triphenylmethane dyes in the presence of cationic surfactants, Anal. Chim. Acta 159:309–317.

    CAS  Google Scholar 

  • Jarvis, I., 1992. Sample preparation for ICP-MS, in: Handbook of Inductively Coupled Plasma Mass Spectrometry (K. E. Jarvis et al., eds.), Blackie, Glasgow, pp. 172–224.

    Google Scholar 

  • Jarvis, K. E., and Williams, J. G., 1993, Laser ablation-ICP-MS. A rapid technique for the direct, quantitative determination of major, trace and rare earths in geological samples, Chem. Geol. 106:251–262.

    CAS  Google Scholar 

  • Jervis, R. E., and Wong, K. Y., 1967. Chromatographic group separation scheme used with gamma spectrometry for multi-element NAA surveys, in: Nuclear Activation Techniques in Life Sciences I.A.E.A, Vienna, pp. 137–152.

    Google Scholar 

  • Jinno, K., Kawasaki, K., Sato, M., Amemiya, S., and Katoh, T., 1983. Detection limit in the (pX,X) technique. A novel method for trace element analysis, J Radioanal. Chem. 76:139–149.

    CAS  Google Scholar 

  • Johansson, S. A. E., and Campbell, J. L., 1988. PIXE: A Novel Technique for Elemental Analysis, John Wiley and Sons, Chichester.

    Google Scholar 

  • Johnson, K. T. M., Dick, H. J. B., and Shimizu, N., 1990. Melting in the oceanic upper mantle. An ion microprobe study of diopsides in abyssal peridotites, J. Geophys. Res. 95:2661–2678.

    Google Scholar 

  • Jones, W. R., 1994. Electrophoretic capillary ion analysis, in: Handbook of Capillary Electrophoresis (J. P. Landers, ed.), CRC Press, Boca Raton, pp. 209–232.

    Google Scholar 

  • Jork, H., Funk, W., Fischer, W., and Wimmer, H., 1990. Thin-Layer Chromatography, Reagents and Detection Methods, VCH, Weinheim, Vol. la.

    Google Scholar 

  • Jorstad, K., and Salbu, B., 1980. Determination of trace elements in sea water by NAA and electrochemical separation, Anal. Chem. 52:672–676.

    Google Scholar 

  • Kamei, E., and Okushita, Y., 1989. Selective separation of scandium from aqua salmon, Japan patent 01108118. CA 111:236049j.

    Google Scholar 

  • Karcher, B. D., and Krull, I. S., 1987. Fluorescence detection of metal ions separated on a silica-based HPLC reversed-phase support, J. Chromatogr. Sci. 25:472–478.

    CAS  Google Scholar 

  • Kenawy, I. M., and Hafez, M. A. H., 1989. Application of wall stabilized plasma arc to optical AES of lanthanides, yttrium and scandium after separation with cellulose ion-exchanger, Anal. Sci. 5:5560.

    Google Scholar 

  • Kingston, H. M., and Jassie, L. B., eds., 1988. Introduction to Microwave Sample Preparation Theory and Practice, ACS, Washington.

    Google Scholar 

  • Kistemaker, P. G., and Nibbering, N. M. M., 1992. Advances in Mass Spectrometry, Elsevier, Amsterdam.

    Google Scholar 

  • Klockenkämper, R., Knoth, J., Prange, A., and Schwenke, H., 1992. total-reflection X-ray fluorescence spectroscopy, Anal. Chem. 64:1115–1120.

    Google Scholar 

  • Kniseley, R. N., Fassel, V. A., and Butler, C. C., 1970. Atomic emission and absorption spectroscopy of the rare earth elements, in: Analytical Flame Spectroscopy (R. Mavrodineanu, ed.), Macmillan, London, pp. 379–410.

    Google Scholar 

  • Korenman, Y. I., Zeltser, L. E., Bychenko, A. V, Vereshchagna, N. G., and Arkhipova, L. A., 1994. Sorption-fluorimetric determination of scandium by using immobilized quercetin, Zh. Prikl. Khim. 67:322–325 (Russian).

    CAS  Google Scholar 

  • Korkisch, J., 1989. Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry, CRC Press, Boca Raton, Vols. 1–4.

    Google Scholar 

  • Korovin, V. Yu., Randarevich, S. B., Bodaratskii, S. V, and Trachevskii, V. V, 1990. A 31P and 45Sc NMR study of the extraction of scandium from sulfuric acid solutions by TBP and SEXTR-TBP, Russian J. Inorg. Chem. 35:1369–1372.

    Google Scholar 

  • Kovacs, M., Nyary, I., and Toth, L., 1984. The microelement content of some submerged and floating aquatic plants, Acta Bot. Hung. 30:173–185.

    CAS  Google Scholar 

  • Kramer, J. R., and Allen, H. E., eds, 1988. Metal Speciation. Theory and Applications, Lewis Publishing, Boca Raton.

    Google Scholar 

  • Krivan, V, Schneider, G., Baumann, H., and Reus, U., 1994. Multi-element characterization of tobacco smoke condensate, Fresenius J Anal. Chem. 348:218–225.

    CAS  Google Scholar 

  • Krueger, C., Gorski, B., Novgorodov, A. E, and Fischer, S., 1990. A rapid separation method for radio-scandium from proton-irradiated transition metals, J. Radioanal. Nucl. Chem. 144:17–25.

    CAS  Google Scholar 

  • Kucera, J., Soukal, I., and Horakova, J., 1993. NAA of new botanical reference materials, Fresenius J.Anal. Chem. 345:188–192; 193–197.

    CAS  Google Scholar 

  • Landers, J. E, ed., 1994. Handbook of Capillary Electrophoresis, CRC Press, Boca Raton.

    Google Scholar 

  • Lanza, P., 1997. Polarographic determination of yttrium based on reduction of its solochrome violet RS complex. Application to the analysis of the superconductive YBa2Cu3O4, Anal. Chim Acta 34:91–95.

    Google Scholar 

  • Lepel, E. A., and Laul, J. C., 1987. Trace rare earth element analysis of IAEA hair, animal bone and other biological standards by radiochemical neutron analysis, J. Radioanal. Nucl. Chem. Art. 113:275–284.

    CAS  Google Scholar 

  • Letokhov, V. S., ed., 1985. Laser Analytical Spectrochemistry, Adam Hilger, Bristol.

    Google Scholar 

  • Lin, X., Van Renterghem, D., de Corte, F., and Cornelis, R., 1989. Correction for neutron induced reaction interferences in the k0-standardization method, J. Radioanal. Nuclear Chem. Art. 133:153–165.

    CAS  Google Scholar 

  • Lodding, A., Odelius, H., and Petersson, L. G., 1984. Sensitivity and quantitation of SIMS as applied to biomineralization, in: Secondary Ion Mass Spectrometry (A. Benninghoven et al., eds), Springer-Verlag, Berlin,pp. 478–484.

    Google Scholar 

  • Lvov, B. V, 1988. GF-AAS on the way to absolute analysis, Anal. Proc. 25:222–224.

    CAS  Google Scholar 

  • Maenhaut, W, 1990. Multielement analysis of biological materials by particle-induced X-ray emission (PIXE), Scanning Microscopy 4:43–62.

    CAS  Google Scholar 

  • Maenhaut, W, 1994, personal communication, with permission.

    Google Scholar 

  • Maenhaut, W, DeReu, L., and Tomza, V, 1982. The determination of trace elements in commercial human serum albumin solutions by proton-induced x-ray emission spectrometry and NAA, Anal. Chim. Acta 136:301–309.

    CAS  Google Scholar 

  • Marcus, Y., and Kertes, A. S., 1969. Ion Exchange and Solvent Extraction of Metal Complexes, John Wiley and Sons, London.

    Google Scholar 

  • Marczenko, Z., 1986. Separation and Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, New York, pp. 501–505.

    Google Scholar 

  • Markert, B., 1993. Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research sample, Fresenius J. Anal. Chem. 345:318–322.

    CAS  Google Scholar 

  • Markert, B., and Li, Z. D., 1991. Natural background, concentrations of rare earths in a forest ecosystem, Sci. Total Environ. 103:27–35.

    CAS  Google Scholar 

  • Maxwell, J. A., Campbell, J. L., and Teesdale, W. J., 1989.The Guelph PIXE software package, Nucl. Instr. Meth. Phys. Res. B43: 218–230.

    CAS  Google Scholar 

  • McClure, J., and Smith, P. S., 1984. The localization of Al and other elements in bone tissue of a case of renal osteodystrophy with an associated dialysis encephalopathy syndrome, J. Pathol. 142:293–299.

    Google Scholar 

  • Miyata, T., Goto, M., and Nakashio, E, 1995. Novel synergistic agent for selective separation from other elements, Separ. Sci. Technol. 30:2349–2363.

    CAS  Google Scholar 

  • Mizuike, A., 1983. Enrichment Techniques for Inorganic Trace Analysis, Springer-Verlag, Berlin. Moenke-Blankenburg, L., 1989. Laser Microanalysis, John Wiley and Sons, Chichester.

    Google Scholar 

  • Moldovan, Z., Vladescu, L., and Sandu, T., 1997. Sorption of Sc3+ Y3+ and La3+ using some resins with complexing properties, Rev. Chim (Bucharest), 48:63–67 (Rumanian).

    CAS  Google Scholar 

  • Montaser, A., and Golightly, D. W, eds, 1992. Inductively Coupled Plasmas in Analytical Atomic Spectrometry, VCH, New York.

    Google Scholar 

  • Moore, L. J., Fassett, J. D, and Travis, J. C., 1984. Systematics of multielement determination with resonance ionization MS and thermal atomization, Anal. Chem. 56:2770–2775.

    CAS  Google Scholar 

  • Morrison, G. H., and Potter, N. M., 1972. Multielement NAA of biological materials using chemical group separation and high resolution gamma spectrometry, Anal. Chem. 44:839–842.

    CAS  Google Scholar 

  • Mumcu, T., Gökmen, I., Gökmen, A., Parr, R. M., and Aras, N. K., 1988. Determination of minor and trace elements in Turkish diet by duplicate portion technique, J. Radioanal. Nucl. Chem. Art. 124:289–299.

    CAS  Google Scholar 

  • Muzgin, V. N., Atnashev, V. B., Pupyshev, A. A., and Atnashev, Yu. B., 1986. AAS trace analysis with a carbon-modified tungsten-coil atomizer, J. Anal. Chem. USSR 41:1246–1252.

    Google Scholar 

  • Nakahara, H., Tsukada, M., Morizumi, A., Horiuchi, K., and Murakami, Y., 1982. Matrix effects on epithermal NAA of various kinds of reference materials, J. Radioanal. Chem. 72: 377–391.

    CAS  Google Scholar 

  • Nakamura, Y., Hasegawa, Y., Tonogai, Y., Kanamoto, M., Tsuboi, N., Murakami, K, and Ito, Y., 1991. Method for analysis of dysprosium, europium, ytterbium and yttrium from biological materials, Jpn. J. Toxicol. Environ. Health 37:28–38 (Japanese).

    CAS  Google Scholar 

  • Ng, K. C., Simeonsson, J.B., and Winefordner, J. D., 1991. Laser excited atomic and ionic fluorescence of metal vapors in ICP, in: Proc. Internat. Conf. on Lasers (D. G. Harris and J. Herbelin, eds.), STS Press, McLean, pp. 634–641.

    Google Scholar 

  • Nirel, P, Thomas, A. J., and Martin, J. N., 1986. A critical evaluation of sequential extraction technique in: Speciation of Fission and Activation Products in the environment (R. A. Bulman and J. R. Cooper, eds.), Elsevier, London, pp. 19–26.

    Google Scholar 

  • Nomura, K., Mikami, A., Kato, T., and Oka, Y., 1970. The determination of scandium and gold in meteorites, tektites and standard rocks by NAA with an interference method, Anal. Chim. Acta 51:399–408.

    CAS  Google Scholar 

  • Okamoto, K. H., 1980. Preparation, Analysis and Certification of Pepperbush, National Institute for Environmental Studies, Korivama.

    Google Scholar 

  • Okoshi, K., 1993. Application of synchrotron radiation to the characterization of biominerals, Radioisotopes 25:661–666 (Japanese).

    Google Scholar 

  • Omenetto, N., and Winefordner, J. D., 1985. Scattering in atomic fluorescence flame spectroscopy, Prog. Anal. Atom. Spectr. 8:371–449.

    CAS  Google Scholar 

  • Onishi, H., 1989. Photometric Determination of Traces of Metals, John Wiley and Sons, New York.

    Google Scholar 

  • Otruba, V., and Sommer, L., 1989. Determination of aluminum, scandium and REE by emission flame spectrometry, Fresenius J Anal. Chem. 335:887–892.

    CAS  Google Scholar 

  • Oughton, D. H., and Davy, J. E, 1993. Determination of cesium, rubidium, and scandium in biological and environmental materials by NAA, J. Radioanal. Nucl. Chem. 174:177–185.

    CAS  Google Scholar 

  • Paisner, J. A., 1988. Atomic vapor laser isotope separation, Appl. Phys. 46B:253–260.

    Google Scholar 

  • Panday, V. K., Becker, J. S., and Dietze, H.-J., 1995. Trace analysis of REE and other impurities in high purity scandium by ICP-MS after liquid-liquid extraction of the matrix, Fresenius J. Anal.Chem. 352:327–334.

    CAS  Google Scholar 

  • Papp, S., Rutzke, M., and Martonosi, A. N., 1985. The effect of chelating agents on the elemental composition of sarcoplasmic reticulum, Arch. Biochem. Biophys. 243:254–263.

    CAS  Google Scholar 

  • Parry, S. J., 1991. Activation Spectrometry in Chemical Analysis, John Wiley and Sons, New York. Parsons, M. L., Forster, A., and Donn, A., 1980. An Atlas of Spectral Interferences in ICP Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Pietra, R., Sabbioni, E., Gallorini, M., and Orvini, E., 1986. Environmental, toxicological and biomedical research on trace metals. Radiochemical separation for NAA, J. Radioanal Nucl. Chem. Art. 102:69–98.

    CAS  Google Scholar 

  • Pietrelli, L., Mausner, L. F., and Kolsky, K. L., 1992. Separation of carrier-free 47Sc from titanium targets, J. Radioanal. Nucl. Chem. 157:335–345.

    CAS  Google Scholar 

  • Pineda, C. A., and Peisach, M., 1988. Matrix corrections for the determination of trace elements in thick biological samples by PIXE, Nucl. Instrum. Meth. Phys. Res. 35B:344–348.

    Google Scholar 

  • Preston, J. S., 1994. Solvent extraction of the trivalent lanthanides and yttrium by some 2-bromoalkanoic acids, Solvent Extr. Ion Exch. 12:29–54.

    CAS  Google Scholar 

  • Pringle, T. G., and Jervis, R. E., 1987. Multielement correlations for airborne particulate source attribution, J. Radioanal. Nucl. Chem. Art. 110:321–332.

    CAS  Google Scholar 

  • Qureshi, M., ed., 1987. Handbook of Chromatography, Vol. I-Inorganic, CRC Press, Boca Raton.

    Google Scholar 

  • Qureshi, M., and Varshney, K. G., eds., 1991. Inorganic Ion Exchangers in Chemical Analysis, CRC Press, Boca Raton.

    Google Scholar 

  • Ramendik, G. I., 1990. Elemental analysis without standard reference samples. The general aspect and the realization in SSMS and LMS, Fresenius J. Anal. Chem. 337:772–776.

    CAS  Google Scholar 

  • Rane, A. T., and Bhatki, K. S., 1966. Rapid radiochemical separation of 90Sr-90Y and 90Ca-46Sc on a cation exchange resin, Anal. Chem. 38:1598–1601.

    CAS  Google Scholar 

  • Robinson, J. W, 1990. Atomic Spectroscopy, Marcel Dekker, New York.

    Google Scholar 

  • Robinson, J. W., ed., 1991. Practical Handbook of Spectroscopy, CRC Press, Boca Raton.

    Google Scholar 

  • Rogero, S. O., Saiki, N., Saldiva P. H. N., and Daliberto, N. L., 1994. Determination of trace elements in human lung samples, Biol. Trace Elem. Res. 41:489–494.

    Google Scholar 

  • Rösch, N., Totland, N., Jarvis, I., and Jarvis, K. E., 1993. An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry, Chem. Geol. 95:35–62.

    Google Scholar 

  • Rossbach, M., and Stoeppler, M., 1988. Multielement fingerprints for characterization earthworm samples front the environmental specimens bank of the RFG, Fresenius J Anal. Chem. 332:636–639.

    CAS  Google Scholar 

  • Ruzicka, J., and Hansen, E. H., 1988. Flow Injection Analysis, John Wiley and Sons, New York.

    Google Scholar 

  • Ryabukhin, Yu. S., 1980. International coordinated program on activation analysis of trace element pollutants in human hair, in: Hair, Trace Elements,and Human Illness (A.C. Brown and R. G. Crounse, eds.), Praeger, Westport, pp. 1–71.

    Google Scholar 

  • Saiki, M., Nastasi, M. J. C., and Lima, E W, 1981. Use of tetracycline as complexing agent in radiochemical separations, J. Radioanal. Chem. 64:83–116

    CAS  Google Scholar 

  • Saiki, M., Vasconcellos, M. B. A., Maihara, V. A., Armelin, H.J.A., Favaro, D. I. T., and Rogero, S. O., 1994. NAA of biological samples at the radiochemistry division of IPEN-CNEN.SP, Biol. Trace Elem. Res. 41:517–525.

    Google Scholar 

  • Saleh, M. S., 1995. Spectrophotometric determination of microamounts of yttrium with 1-amino-4hydroxyanthraquinone, Monatsh. Chem. 126:621–629.

    CAS  Google Scholar 

  • Satake, K., Iwatsuki, Z., and Nishikawa, M., 1984. Inorganic elements in some aquatic Bryophytes from Caledonia, J. Hattori Bot. Lab. 57:71–82.

    CAS  Google Scholar 

  • Sato, T., 1986. NAA of laboratory animals diets, Radioisotones 35:24–27 (Japanese).

    CAS  Google Scholar 

  • Schmelzer, W, and Behne, D., 1975. Application of isoelectric focusing in the determination of protein bound trace elements, in: Pmgress in Isoelectric Focusing and Isotachophoresis (PG. Rightetti, ed.), North-Holland Publishers, Amsterdam, pp. 257–264.

    Google Scholar 

  • Schrenk, W. G., 1975. Analytical Atomic Spectroscopy, Methods and Applications, John Wiley and Sons, New York.

    Google Scholar 

  • Schulman, S. G., 1985. Molecular Luminescence Spectroscopy, Methods and Applications, John Wiley and Sons, New York.

    Google Scholar 

  • Schulten, H.-R., Bahr, U., and Palavinskas, R., 1984. New method for MS trace analysis of metals in biology and medicine, Fresenius J. Anal. Chem. 317:497–511 (German).

    CAS  Google Scholar 

  • Segebade, C., Weise, H.-P., and Lutz, G. J., 1984. Photon Activation Analysis, de Gruyter, Berlin.

    Google Scholar 

  • Sen Gupta, J. G., 1985. Determination of rare earths yttrium and scandium in silicate rocks and four new geological reference materials by electrothermal atomization from graphite and tantalum surfaces, Talanta 32:1–6.

    Google Scholar 

  • Serdobova, L. I., and Bolshakova, N. A., 1995. Method for spectrographic determination of rare-earth elements, yttrium, scandium, niobium, zirconium, and hafnium in alkaline minerals and rare earth ores, Russian patent 1005555. CA 123:328772r.

    Google Scholar 

  • Serjeant, E. P. 1984. Potentiometry and Potentiometric Titrations, John Wiley and Sons, New York.

    Google Scholar 

  • Seubert, A., 1993. One-line coupling of atomic emission spectrometry and ion chromatography with time resolved registration as a new tool for ultra trace analysis in refractory metals, Fresenius J. Anal. Chem. 345:547–563.

    CAS  Google Scholar 

  • Shekhovtsova, T. N., Pirogova, S. V., Fedorova, O. M., Dolmanova, I. F., and Baikov, A. A., 1993. Enzymatic method of determining rare earth elements using pyrophosphatases, Russian J. Anal. Chem. 48:370–375.

    Google Scholar 

  • Sidhu, N. P. S., Mittál, V. K., and Sahota, H. S., 1987. A comment on the NAA of trace elements in cancerous breast tissue, Indian J. Phys. 61A:170–172.

    CAS  Google Scholar 

  • Siriraks, A., Kingston, H. M., and Riviello, J. M., 1990. Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples, Anal. Chem. 62:1185–1193.

    CAS  Google Scholar 

  • Sisson, T. W, 1991. Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe, Geochim. Cosmochim. Acta 55:1575–1585.

    CAS  Google Scholar 

  • Soloway, A. K., Balcius, J. E, and Ojemann, R. G., 1963. Separation of 49Sc from a calcium target, Int. J. Appl. Radial. Isot. 14:245–249;.

    CAS  Google Scholar 

  • Stettler, L. E., Groth, D. H., and Platek, S. E, 1983. Automated characterization of particles extracted from human lungs. Three cases of tungsten carbide exposure, Scann. Electron. Microsc. pp. 439–448.

    Google Scholar 

  • Stone, S. E, Freitas, M. C., Parr, R. M., and Zeisler, R., 1995. Elemental characterization of candidate lichen research material IAEA 336, Fresenius J Anal. Chem. 352:227–231.

    CAS  Google Scholar 

  • Su, Q., 1991. Yttrium, its separation and applications. in:Rare Earth Minerals and Minerals for Electronic Uses,Proc. Intern. Conf., Hatya, pp. 421–425.

    Google Scholar 

  • Suzuki, S., and Hirai S., 1991 Trace elements in National Institute for Environmental Studies, Standards Reference Materials, in: Biological Trace Elements Research (K.S. Subramanian et al., eds.), ACS, Washington, pp. 221–239.

    Google Scholar 

  • Talbot, V., and Chang, W J., 1987. Rapid multielement analysis of oyster and cockle tissue using X-ray fluorescence spectrometry, with application to reconnaissance marine pollution investigation, Sci. Total Environ. 66:213–223.

    CAS  Google Scholar 

  • Taylor, H. E., and Garbarino, J. R., 1992. Analytical applications of ICP-MS, in: ICP in: Analytical Atomic Spectrometry (A. Montaser and D. W Golightly, eds), VCH,New York, pp. 651–676.

    Google Scholar 

  • Thompson, M., and Walsh, J. N., 1989. Handbook of Inductively Coupled Plasma Spectrometry, Blackie, Glasgow.

    Google Scholar 

  • Tölg, G., 1992. The role of trace elements for life from the point of view of an analytical chemist in: Metal Compounds in Environment and Life (E. Merian and W Haerdi, eds.), Science Technology Letters, Northwood, pp.1–22.

    Google Scholar 

  • Tölgyessy, J., and Kyrs, H., 1989. Radioanalytical Chemistry, Ellis Horwood, Chichester.

    Google Scholar 

  • Tout, R. E., and Chatt, A., 1980. A critical evaluation of short-lived and long-lived neutron activation products for trace element determinations. Anal. Chim. Acta 118:341–358.

    CAS  Google Scholar 

  • Truglio, N. L., and Guinn, V. P., 1987. Elements very rapidly measurable by INAA in biological and environmental materials, J. Radioanal. Nucl. Chem. Art. 110:41–45.

    CAS  Google Scholar 

  • Tsumura, A., and Yamasaki, S., 1992. Direct determination of REE and actinides in fresh water by double-focusing and high resolution ICP-MS, Radioisotopes 41:185–192 (Japanese). CA 6:262155p.

    CAS  Google Scholar 

  • Tu, S.-D., and Lieser, K. H., 1984. Multi-element analysis of Chinese biological standard reference materials by monostandard INAA, J. Radioanal. Nucl. Chem. Art. 81:345–352.

    CAS  Google Scholar 

  • Turnock, W. J., Gerber, G. H., and Sabourin, D. U., 1980. An evaluation of the use of elytra and bodies in x-ray energy dispensing spectroscopy studies in the red turnip beetle Ontomocelis americana, Entomol. 112:609–614.

    CAS  Google Scholar 

  • Uchida, H.; Kosinski, M. A., Omenetto, N., and Winefordner, J., D., 1984. Studies on lifetime measurements and collisional processes in an argon ICP using laser induced fluorescence, Spectmchim. Acta 39B:63–68.

    CAS  Google Scholar 

  • Urena Pozo, M. E., Garcia de Torres, A., Cano Pavon, J. M., and Sanchez Rojas, E, 1991. Sensitive and selective fluorimetric determination of scandium with salicylaldehyde carbohydrazone, Analyst 116:757–760.

    Google Scholar 

  • Valcarcel, M., and Luque de Castro, M. D., 1988. Automatic Methods of Analysis, Elsevier, Amsterdam.

    Google Scholar 

  • Valkovic, V, 1989. X-Ray Spectroscopy in Environmental Sciences, CRC Press, Boca Raton. Vandecasteele, C., and Block, C. B., 1993. Modern Methods for Trace Element Determination, John Wiley and Sons, Chichester.

    Google Scholar 

  • Versieck, J., Barbier, E, Cornelis, R., and Hoste, J., 1982. Sample contamination as a source of error in trace element analysis of biological samples, Talanta 29:973–984.

    CAS  Google Scholar 

  • Vertes, A., Gijbels, R., and Adams, E, eds., 1993. Laser Ionization Mass Analysis, John Wiley and Sons, New York.

    Google Scholar 

  • Wang, C. M., and Fu, X. T., 1993. Polarographic and voltammetric study of Sc3+-acid chrome blue K complex and determination of trace scandium, Anal. Let. 26:2203–2215.

    CAS  Google Scholar 

  • Wang, S. R., and Wu, X. J., 1985. Study on capillary gas chromatography behavior of rare earths chelates of TPM, in: New Frontiers in Rare Earth Science and Applications(G. X. Xu and J. M. Ziao, eds.), Science Press, Beijing, pp. 569–572.

    Google Scholar 

  • Wang, X., Lasztity, A., Viczian, M., Israel, Y., and Barnes, R. M., 1989. ICP spectrometry in the study of childhood soil ingestion, J. Anal. Atom. Spectr. 4:727–742.

    CAS  Google Scholar 

  • Wang, X. R., and Barnes, R. M., 1989. Chelating resins for on-line flow injection pre-concentration with ICP-AES, J. Anal. Atom. Spectr. 4:509–518.

    CAS  Google Scholar 

  • Watanabe, K., Kamagata, T, and Itagaki, N., 1995. Solvent extraction fluorimetric determination of scandium and yttrium with 2-hydroxy-5-methylbenzaldehyde semicarbazone, Bunseki Kagaku 44:609–615.

    CAS  Google Scholar 

  • Watkins, P. J., and Nolan, J., 1992. Determination of REE, yttrium, scandium and hafnium using cation-exchange separation and ICP-AES, Chem. Geol. 95:131–139.

    CAS  Google Scholar 

  • West, T. S., ed., 1973. Analytical Chemistry, Butterworths, London.

    Google Scholar 

  • Williams, C. T., and Potts, P. J., 1988. Element distribution maps in fossil bones, Archeometry 30:237–247.

    CAS  Google Scholar 

  • Willis, J, P., 1983. Trace element studies on South African coals and fly ash, Spec. Publ. Geol. Soc. S. Afr. 7:129–135.

    Google Scholar 

  • Wilson, C.L., and Wilson, D. W, 1959–1990. Comprehensive Analytical Chemistry, Elsevier, Amsterdam, Vols. 1–29.

    Google Scholar 

  • Winefordner, J. D., Smith, B.W., and Omenetto, N., 1989.Theoretical considerations of laser induced fluorescence and ionization spectrometry: How close to single atom detection, Spectrochim. Acta 44B:1397–1403.

    CAS  Google Scholar 

  • Winge, R. K., Fassel, V. A., Peterson, V. J., and Floyd, M.A., 1985. ICP-AES, An Atlas of Spectral Information, Elsevier, Amsterdam.

    Google Scholar 

  • Wise, S. A., Schantz, M. M., Koster, B. J., Demiralp, R., Mackey, E. A., Greenberg, R. R., Burow, M., Istapczuk, E, and Lillestolen, T. I., 1993. Development of frozen whale blubber and liver reference materials for the measurement of organic and inorganic contaminants, Fresenius J. Anal. Chem. 345:270–277.

    CAS  Google Scholar 

  • Woittiez, J. R. W, and Iyengar, G. V, 1988. The use of neutron activation in dietary reference material analysis, Fresenius J. Anal. Chem. 332:657–661.

    CAS  Google Scholar 

  • Wood, D. J., Elshani, S., Du, H. S., Natale, N. R., and Wai, L. N., 1993. Separation of 90Y from 905r by solvent extraction with ionizable crown ethers, Anal. Chem. 65:1350–1354.

    CAS  Google Scholar 

  • Wu, J., Boyle, T. J., Shreeve, J. L., Ziller, J. W, and Evans, W. J., 1993. CP-MAS 89Y spectroscopy. A facile method for characterizing yttrium-containing solids, Inorg. Chem. 32:1130–1134.

    CAS  Google Scholar 

  • Wyttenbach, A., Bajo, S., Tobler, L., and Zimmerli, B., 1987. The concentration of 19 trace elements in the Swiss diet, in: Trace Element. Analytical Chemistry in Medicine and Biology (P. Brätter and P. Schrammel, eds.), Walter de Gruyter, Berlin, Vol. 4, pp. 171–179.

    Google Scholar 

  • Xu, Y. J., Chen, X.G, and Hu, Z. D., 1987. The spectrophotometric determination of scandium in Eriochrome cyanine R(Chrome azurol 5)-phosphatidyl choline system, Anal. Lett. 20:1001–1011.

    CAS  Google Scholar 

  • Yagi, M., and Kondo, K., 1977. Preparation of carrier-free47Sc by the 48Tic (y, p) reaction, Int. J. Appl. Radial. Isot. 28:463–468.

    CAS  Google Scholar 

  • Yamamoto, K., 1987. New Metals Data Book,Kinjaku-Jihyo, Kobe (Japanese).

    Google Scholar 

  • Yamamoto, T., Otsuka, Y., Aoyama, K., and Okamoto, K., 1984. Character of each element on its distribution in seaweeds, Hydrobiol. 116:510–512.

    Google Scholar 

  • Yamasaki, S., and Tsumura, A., 1992, Determination of ultra-trace levels of elements by high resolution ICP-MS with an ultrasonic nebulizer, Wat. Sci. Techn. 25:205–212.

    CAS  Google Scholar 

  • Yang, X.-J., Gu, Z.-M., and Wang, D.-X., 1995. Extraction separation of scandium from rare earths by electrostatic pseudo liquid membrane, J. Membrane Sci. 106:131–145.

    CAS  Google Scholar 

  • Yoshida, K., and Haraguchi, H., 1984. Determination of rare earth elements by liquid chromatographyICP-AES, Anal.Chem. 56:2580–2585.

    CAS  Google Scholar 

  • Yoshinaga, J., Matsuo, N., Imai, H., Nakazawa, M., and Suzuki, T., 1990. Application of ICP-MS to multi-element analysis of human organs, Intern. J. Environ. Anal. Chem. 41:27–38.

    CAS  Google Scholar 

  • Zachmann, D. W, 1988. Matrix effects in the separation of REE, scandium and yttrium and their determination by ICP optical AES, Anal. Chem. 60:420–427.

    CAS  Google Scholar 

  • Zaichick, V. Y., 1995. Application of synthetic reference materials in the Medical Radiological Research Center, Fresenius J Anal. Chem. 352:219–223.

    Google Scholar 

  • Zeisler, R., Becker, D. A., and Gills, T. E., 1995. Certifying the chemical composition of a biological material. A case study, Fresenius J. Anal. Chem. 352:111–113.

    CAS  Google Scholar 

  • Zolotov, Yu. A., and Kuz’min, N. M., 1990. Preconcentration of Trace Elements, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horovitz, C.T. (1999). Analytical Chemistry of Scandium and Yttrium. In: Biochemistry of Scandium and Yttrium, Part 1: Physical and Chemical Fundamentals. Biochemistry of the Elements, vol 13A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4313-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4313-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6936-3

  • Online ISBN: 978-1-4615-4313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics