Skip to main content

Reaction Rate Theory

  • Chapter
Modern Physical Chemistry
  • 1151 Accesses

Abstract

IN CHAPTERS 15 AND 16, WE SAW THAT ELEMENTARY REACTIONS may be unimolecular, bimolecular, or termolecular. In a unimolecular step, a molecule with excess energy concentrates enough energy in the bond or bonds to be broken and movement to product occurs. In a bimolecular or termolecular step, the reactant molecules come together in an inelastic collision. When enough kinetic energy is transformed to potential energy, movement to products occurs. In most cases, these processes involve passage over a potential energy barrier, as figureindicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  • Connors, K A.: 1990 Chemical Kinetics: The Study of Reaction Rates in Solution, VCH Publishers, Inc., New York, pp 187–243.

    Google Scholar 

  • Steinfeld, J. L, Francisco, J. S., and Hase, W. L: 1989 Chemical KineticsandDynamics, Prentice-Hall, Englewood Cliffs, NJ, pp. 209–245, 308–341, 402–414.

    Google Scholar 

Articles

  • Andres, J., Moliner, V., and Silla, E.: 1994, “Comparison of Several Semiempirical and ab Initio Methods for Transition State Structure Characteristics. Addition of CO2to CH3NHCONH2J. Phys. Chem. 98 3664–3668.

    Article  CAS  Google Scholar 

  • Bauer, S. H., and Wilcox Jr., C. E: 1995, “What’s in a Name-Transition State or Critical Transition Structure?” J. Chem Educ. 72 13–16.

    Article  CAS  Google Scholar 

  • Castano, R., de Juan, J., and Martinez, E.: 1983, “The Calculation of Potential Energy Curves of Diatomic Molecules: The RKR Method,” J. Chem Educ. 60 91–93.

    Article  CAS  Google Scholar 

  • Clary, D. C.: 1990, “Fast Chemical Reactions: Theory Challenges Experiment,” Annu. Rev. Phys. Chem. 41 51–90.

    Article  Google Scholar 

  • Fernandez, G. M., Sordo, J. A., and Sordo, T. L.: 1988, “Analysis of Potential Energy Surfaces,” J. Chem. Educ. 65 565–667.

    Article  Google Scholar 

  • Green Jr., W. H., Moore, C. B., and Polik, W. F.: 1992, “Transition States and Rate Constants for Unimolecular Reactions,” Annu. Rev. Phys. Chem. 43 591–625.

    Article  CAS  Google Scholar 

  • Hamann, S. D., and le Noble, W. J.: 1984, “The Estimation of Activation Parameters: Corrections and Incorrections,” J. Chem Educ. 61 658–660.

    Article  CAS  Google Scholar 

  • Lehman, J. J., and Goldstein, E.: 1996, “The Potential Energy Surface of C1F3iJ. Chem Educ. 73 1096–1098.

    Article  CAS  Google Scholar 

  • Lehmann, K. K., Scoles, G., and Pate, B. H.: 1994, “Intramolecular Dynamics from EigenstateResolved Infrared Spectra,” Annu. Rev. Phys. Chem. 45 241–274.

    Article  CAS  Google Scholar 

  • Neurnark, D. M.: 1992, “Transition State Spectroscopy of Bimolecular Chemical Reactions,” Annu. Rev. Phys. Chem. 43 153–176.

    Article  Google Scholar 

  • Pilling, M. J.: 1996, “Radical-Radical Reactions,” Annu. Rev. Phys. Chem. 47 81–108.

    Article  CAS  Google Scholar 

  • Rayez, J. C., and Forst, W.: 1989, “Statistical Calculation of Unimolecular Rate Constant,” J. Chem. Educ. 66 311–313.

    Article  CAS  Google Scholar 

  • Reid, S. A., and Reisler, H.: 1996, “Experimental Studies of Resonances in Unimolecular Decomposition,” Annu. Rev. Phys. Chem. 47 495–525.

    Article  CAS  Google Scholar 

  • Sathymaurthy, N., and Joseph, T.: 1984, “Potential Energy Surface and Molecular Reaction Dynamics,” J. Chem. Educ. 61 968–971

    Google Scholar 

  • Schatz, G. C.: 1988, “Quantum Effects in Gas Phase Bimolecular Chemical Reactions,” Annu. Rev. Phys. Chem. 39 317–340.

    Article  CAS  Google Scholar 

  • Schroedar, J., and Troe, J.: 1987, “Elementary Reactions in the Gas-Liquid Transition Range,” Annu. Rev. Phys. Chem. 38 163–190.

    Article  Google Scholar 

  • Truhlar, D. G.: 1984, “Variational Transition State Theory,” Anna. Rev. Phys. Chem. 35 159–189.

    Article  CAS  Google Scholar 

  • Tsao, J. Y.: 1989, “Transition-State Theory for Quantum and Classical Particle Escape from a Finite Square Well,” Am. J. Phys. 57 269–274.

    Article  Google Scholar 

  • Weston Jr., R. E., and Flynn, G. W.: 1992, “Relaxation of Molecules with Chemically Significant Amounts of Vibrational Energy: The Dawn of the Quantum State Resolved Era,” Annu. Rev. Phys. Chem. 43 559–589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Duffey, G.H. (2000). Reaction Rate Theory. In: Modern Physical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4297-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4297-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46395-2

  • Online ISBN: 978-1-4615-4297-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics