Skip to main content

States of Molecular Electrons

  • Chapter
Book cover Modern Physical Chemistry
  • 1121 Accesses

Abstract

THE CHEMICAL PROPERTIES OF ELEMENTS correlate with their low lying electron configurations. The inertness of the rare gases He, Ne, Ar, Xe, Rn implies that their electron configurations are particularly stable. So when two elements react to form an ionic compound, the resulting electron configurations tend to be those of nearby inert gases. When atoms combine to form covalent bonds, the shared electrons tend to complete the pertinent subshells to also give inert gas configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  • Carsky, P., and Urban, M.: 1980 Ab Initio Calculations: Methods and Applications in Chemistry, Springer-Verlag, Berlin, pp. 1–241.

    Google Scholar 

  • Del Re, G., Berthier, G., and Serre, J.: 1980 Electronic States of Molecules and Atom Clusters: Foundations and Prospects of Semiempirical Methods, Springer-Verlag, Berlin, pp. 1–177.

    Google Scholar 

  • Douglas, B. E., and Hollingsworth, C. A.: 1985 Symmetry in Bonding and Spectra, Academic Press, Orlando, Fl, pp. 1–253.

    Google Scholar 

  • Hinchliffe, A.: 1988 Computational Quantum Chemistry, John Wiley & Sons, Inc., New York, pp. 1–112.

    Google Scholar 

  • Lowe, J. P.: 1978 Quantum Chemistry, Academic Press, New York, pp. 135–571.

    Google Scholar 

  • Simons, J., and Nichols, J: 1997 Quantum Mechanics in Chemistry, Oxford University Press, Oxford, pp. 123–185.

    Google Scholar 

Articles

  • Baird, N. C.: 1986, “The Chemical Bond Revisited,” J. Chem. Educ. 63, 560–664.

    Article  Google Scholar 

  • Blaise, P., and Henri-Rousseau, O.: 1988, “Variational Energy Lowering May Increase Hamiltonian Dispersion,” J. Chem. Educ. 65, 9–11.

    Article  CAS  Google Scholar 

  • Bratsch, S. G.: 1988, “Revised Mulliken Electronegativities I, II,” J. Chem. Educ. 65, 34–41, 223–227.

    Google Scholar 

  • David, C. W.: 1991, “Computing Overlaps between Nonorthogonal Orbitals,” J. Chem. Educ. 68, 129–130.

    Article  CAS  Google Scholar 

  • DeKock, R. L., and Bosma, W. B.: 1988, “The Three-Center, Two-Electron Chemical Bond,” J. Chem. Educ. 65, 194–197.

    Article  CAS  Google Scholar 

  • Dias, J. R.: 1987, “Facile Calculations of the Characteristic Polynomial and,r-Energy Levels of Molecules Using Chemical Graph Theory,” J. Chem. Educ. 64, 213–216.

    Article  CAS  Google Scholar 

  • Dias, J. R.: 1992, “An Example Molecular Orbital Calculation Using the Sachs Graph Method,” J. Chem. Educ. 69, 695–700.

    Article  CAS  Google Scholar 

  • Duke, B. J., and Leary, B.: 1995, “Non-Koopmans’ Molecules,” J. Chem. Educ. 72, 501–504.

    Article  CAS  Google Scholar 

  • George, P., Bock, C. W., and Trachtman, M.: 1984, “The Evaluation of Empirical Resonance Energies as Reaction Enthalpies with Particular Reference to Benzene,” J. Chem. Educ. 61, 225–227.

    Article  CAS  Google Scholar 

  • Hofmann, H. F.: 1997, “A Dynamical Model of the Chemical Bond: Kinetic Energy Resonances between Atomic Orbitals,” Eur. J. Educ. 18, 354–362.

    CAS  Google Scholar 

  • Hollingsworth, C. A.: 1991, “Degeneracies in Separable Systems with 0h Symmetry,” J. Chem. Educ. 68, 23–24.

    Article  Google Scholar 

  • Karafiloglou, P., and Chanessian, G.: 1991, “Understanding Molecular Orbital Wave Functions in Terms of Resonance Structures,” J. Chem. Educ. 68, 583–586.

    Article  CAS  Google Scholar 

  • Keeports, D.: 1986, “A Comparison of Molecular Vibrational Theory to Huckel Molecular Orbital Theory,” J. Chem. Educ. 63, 753–756.

    CAS  Google Scholar 

  • Keeports, D.: 1989, “Application of the Variational Method to the Particle-in-the-Box Problem,” J. Chem. Educ. 66, 314–318.

    Article  CAS  Google Scholar 

  • Maitland, A., and Brown, R. D. H.: 1983, “Systematics in the Assignment of Electronic and Vibronic States for Linear Molecules,” J. Chem. Educ. 60, 202–206.

    Article  CAS  Google Scholar 

  • Mazo, R. M.: 1990, “Molecular Electronic Terms and Molecular Orbital Configurations,” J. Chem. Educ. 67, 135–138.

    Article  CAS  Google Scholar 

  • Pisanty, A.: 1991, “The Electronic Structure of Graphite,” J. Chem. Educ. 66, 804–808.

    Article  Google Scholar 

  • Reed,J. L.: 1992, “Electronegativity and Atomic Charge,” J. Chem. Educ. 69, 785–790.

    Article  CAS  Google Scholar 

  • Reed, L. H., and Murphy, A. R.: 1986, “An Investigation of the Quality of Approximate Wave Functions,” J. Chem. Educ. 63, 757–759.

    Article  CAS  Google Scholar 

  • Sannigrahi, A. B., and Kar, T.: 1988, “Molecular Orbital Theory of Bond Order and Valency,” J. Chem. Educ. 65, 674–676.

    Article  CAS  Google Scholar 

  • Taubmann, G.: 1992, “Calculation of the Hückel Parameter from the Free-Electron Model,” J. Chem. Educ. 69, 95–97.

    Article  Google Scholar 

  • von Nagy-Felsobuki, E. I.: 1989, “Hückel Theory and Photoelectron Spectroscopy,” J. Chem. Educ. 66, 821–824.

    Article  CAS  Google Scholar 

  • Vincent, A.: 1996, “An Alternative Derivation of the Energy Levels of the ‘Particle on a Ring’ System,” J. Chem. Educ. 73, 1001–1003.

    Article  CAS  Google Scholar 

  • Vos, M., and McCarthy, I.: 1997, “Measuring Orbitals and Bonding in Atoms, Molecules, and Solids,” Am. J. Phys. 65, 544–553.

    Article  CAS  Google Scholar 

  • Willis, C. J.: 1991, “Describing Electron Distributions in the Hydrogen Molecule,” J. Chem. Educ. 68, 743–747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Duffey, G.H. (2000). States of Molecular Electrons. In: Modern Physical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4297-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4297-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46395-2

  • Online ISBN: 978-1-4615-4297-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics