Skip to main content

Analyzing Organized Structures

  • Chapter
Modern Physical Chemistry
  • 1119 Accesses

Abstract

THE SYMMETRIES (OR NEAR-SYMMETRIES) OF A MOLECULE or solid unit are embodied in the operations that change it to an equivalent (or nearly equivalent) system. Each such operation transforms a local physical attribute. This may be a displacement associated with an oscillation. It may be an orbital for electrons or nuclei. It may be an angular momentum or spin. It may be electric charge or color charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  • Cotton, F. A.: 1990 Chemical Applications of Group Theory, 3rd edn, John Wiley & Sons, Inc., New York, pp. 1–295.

    Google Scholar 

  • Duffey, G. H.: 1992 Applied Group Theory for PhysicistsandChemists, Prentice-Hall, Englewood Cliffs, NJ, pp. 1–105, 161–189.

    Google Scholar 

  • Hargittai, I., and Hargittai, M.: 1987 Symmetry through the Eyes of a Chemist, VCH Publishers, New York, pp. 1–444.

    Google Scholar 

Articles

  • Baraldi, I., and Carnevali, A.: 1993, “The Relation between Generator Theory and the Theory of Matrix Representations in Symmetry Point Groups of Finite Order,” J. Chem. Educ. 70, 964–967.

    Article  CAS  Google Scholar 

  • Baraldi, I., and Vanossi, D.: 1997, “On the Character Tables of Finite Point Groups,” J. Chem. Educ. 74, 806–809.

    Article  CAS  Google Scholar 

  • Burrows, E. L., and Clark, M. J.: 1974, “Pictures of Point Groups,” J. Chem. Educ. 51, 87–91.

    Article  CAS  Google Scholar 

  • Carter, R. L.: 1991, “The Tabular Method for Reducing Representations,” J. Chem. Educ. 68, 373–374.

    Article  Google Scholar 

  • Condren, S. M.: 1994, “Group Theory Calculations of Molecular Vibrations Using Spreadsheets,” J. Chem. Educ. 71, 486–488.

    Article  CAS  Google Scholar 

  • Contreras-Ortega, C., Vera, L., and Quiroz-Reyes, E.: 1991, “How Great is the Great Orthogonality Theorem?” J. Chem. Educ. 68, 200–202.

    Article  Google Scholar 

  • Contreras-Ortega, C., Vera, L., and Quiroz-Reyes, E.: 1995, “More than One Character Table?” J. Chem. Educ. 72, 821–822.

    CAS  Google Scholar 

  • Ermer, O.: 1990, “Independent Coordinates of Molecular Structures and Group Theory,” J. Chem. Educ. 67, 209–210.

    Article  CAS  Google Scholar 

  • Faltynek, R. A.: 1995, “Group Theory in Advanced Inorganic Chemistry,” J. Chem. Educ. 72, 20–24.

    Article  CAS  Google Scholar 

  • Fujita, S.: 1986, “Point Groups Based on Methane and Adamantane (Td) Skeletons,” J. Chem. Educ. 63, 744–746.

    CAS  Google Scholar 

  • Gelessus, A., Thiel, W., and Weber, W: 1995, “Multipoles and Symmetry,” J. Chem. Educ. 72, 505–508.

    Article  CAS  Google Scholar 

  • Gutman, I., and Potgieter, J. H.: 1994, “Isomers of Benzene,” J. Chem. Educ. 71, 222–224.

    Article  CAS  Google Scholar 

  • Huang, S. O., and Wang, P. G.: 1990, “Further Comment on Infinite Point Groups,” J. Chem. Educ. 67, 34–35.

    Article  Google Scholar 

  • Kettle, S. F. A.: 1989, “How Canxyandx 2- yzHave Unique Symmetries ifxandyare Not Uniquely Defined?“ J. Chem. Educ. 66, 818–820.

    Article  CAS  Google Scholar 

  • Macomber, R. S.: 1997, “A Unifying Approach to Absorption Spectroscopy at the Undergraduate Level,” J. Chem. Educ. 74, 65–67.

    Article  CAS  Google Scholar 

  • McNaught, I. J.: 1997, “Reducible Representations for Linear Molecules,” J. Chem. Educ. 74, 809–811.

    Article  CAS  Google Scholar 

  • Smith, D. W.: 1996, “Simple Treatment of the Symmetry Labels for the d-d States of Octahedral Complexes,” J. Chem. Educ. 73, 504–507.

    Article  CAS  Google Scholar 

  • Tel, L. M., and Perez-Romero, E.: 1988, “Density of Elements in Continuous Point Groups,” J. Chem. Educ. 65, 585–587.

    Article  Google Scholar 

  • Thomas, C. H.: 1974, “The Use of Group Theory to Determine Molecular Geometry from IR Spectra,” J. Chem. Educ. 51, 91–93.

    Article  CAS  Google Scholar 

  • Verkade, J. G.: 1987, “A Novel Pictorial Approach to Teaching Nfolecular Motions in Polyatomic Molecules,” J. Chem. Educ. 64, 411–416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Duffey, G.H. (2000). Analyzing Organized Structures. In: Modern Physical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4297-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4297-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46395-2

  • Online ISBN: 978-1-4615-4297-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics