Skip to main content

Adenoviral and Transgenic Approaches for the Conditional Deletion of Genes from Mammary Tissue

  • Chapter
Methods in Mammary Gland Biology and Breast Cancer Research

Abstract

Over the past decade the tools of gene targeting have permitted an unparalleled insight into genetic pathways that control mammary development and tumorigenesis in the mouse. However, the role of many genes in development and disease remains elusive, since their deletion from the mouse genome is either lethal for the mouse or does not mimic human disease progression. Thus, targeting gene deletions or modifications precisely to mammary epithelial cells during distinct time windows is a promising approach to establish high-fidelity mouse models for the study of development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ad:

adenoviral

BLG:

β-lactoglobulin

CMV:

cytomegalovirus

ES:

embryonic stem

GOI:

gene of interest

LTR:

long terminal repeat

MMTV:

mouse mammary tumor virus

WAP:

whey acidic protein

References

  1. L. Hennighausen and G. W. Robinson (1998). Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 12 (4): 449–455.

    Article  PubMed  CAS  Google Scholar 

  2. G. W. Robinson, D. Accili, and L. Hennighausen (2000). Rescue of mammary epithelium of early lethal phenotypes by embryonic mammary gland transplantation as exemplified with insulin receptor null mice, Chapter 26 this volume.

    Google Scholar 

  3. N. D. Horseman, W. Zhao, E. Montecino-Rodriguez, M. Tanaka, K. Nakashima, S. J. Engle, E Smith, E. Markoff, and K. Dorshkind (1997). Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 16: 6926–6935.

    Article  PubMed  CAS  Google Scholar 

  4. K. U. Wagner, W. S. Young, X. Liu, E. I. Ginns, M. Li, P. A. Furth, and L. Hennighausen (1997). Oxytocin and milk removal are required for post-partum mammary-gland development. Genes and Function 1 (4): 233–244.

    Article  PubMed  CAS  Google Scholar 

  5. J. R. Brown, H. Ye, R. T. Bronson, P. Dikkes, and M. E. Greenberg (1996). A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86: 297–309.

    Article  PubMed  CAS  Google Scholar 

  6. L. A. Donehower, M. Harvey, H. Vogel, M. J. McArthur, C. A. J. Montgomery, S. H. Park, T. Thompson, R. J. Ford, and A. Bradley (1996). Effects of genetic background on tumorigenesis in p53-deficient mice. Mol. Carcinog 14: 16–22.

    Article  Google Scholar 

  7. D. W. Threadgill, A. A. Dlugosz, L. A. Hansen, T. Tennenbaum, U. Lichti, D. Yee, C. LaMantia, T. Mourton, K. Herrup, and R. C. Harris (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269: 230–234.

    Article  PubMed  CAS  Google Scholar 

  8. T. Jacks, A. Fazeli, E. M. Schmitt, R. T. Bronson, M. A. Goodell, and R. A. Weinberg (1992). Effects of an Rb mutation in the mouse. Nature 359: 295–300.

    Article  PubMed  CAS  Google Scholar 

  9. B. Sauer and N. Henderson (1988). Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage Pl. Proc. Natl. Acad. Sci. U.S.A 85: 5166–5170.

    Article  PubMed  CAS  Google Scholar 

  10. P. C. Orban, D. Chui, and J. D. Marth (1992). Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A 89: 6861–6865.

    Article  PubMed  CAS  Google Scholar 

  11. M. Lakso, B. Sauer, B. J. Mosinger, E. J. Lee, R. W. Manning, S. H. Yu, K. L. Mulder, and H. Westphal (1992). Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A 89: 6232–6236.

    Article  PubMed  CAS  Google Scholar 

  12. H. Gu, J. D. Marth, P. C. Orban, H. Mossmann, and K. Rajewsky (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106.

    Article  PubMed  CAS  Google Scholar 

  13. E. Buchholz, P. O. Angrand, and A. F. Stewart (1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol 16: 657–662.

    Article  PubMed  CAS  Google Scholar 

  14. E. Marshall (1998). NIH, DuPont declare truce in mouse war. Science 281: 1261–1262.

    Article  PubMed  CAS  Google Scholar 

  15. R. Ramirez-Solis, P. Liu, and A. Bradley (1995). Chromosome engineering in mice. Nature 378: 720–724.

    Article  PubMed  CAS  Google Scholar 

  16. J. Van Deursen, M. Fornerod, B. Van Rees, and G. Grosveld (1995). Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. U.S.A 92: 7376–7380.

    Article  PubMed  Google Scholar 

  17. K. U. Wagner, R. J. Wall, L. St.-Onge, P. Gruss, A. Wynshaw-Boris, L. Garrett, M. Li, P. A. Furth, and L. Hennighausen (1997). Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25 (21): 4323–4330.

    Article  PubMed  CAS  Google Scholar 

  18. S. Seibert, D. J. Bentley, D. W. Melton, D. Ronnie, P. Lourenco, C. J. Watson, and A. R. Clarke (1998). Efficient BLG-Cre mediated gene deletion in the mammary gland. Transgenic Res. 7: 387–396.

    Article  Google Scholar 

  19. C. Barlow, M. Schroeder, J. Lekstrom-Himes, H. Kylefjord, C. X. Deng, A. Wynshaw-Boris, B. M. Spiegelman, and K. G. Xanthopoulos (1997). Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments [published erratum appears in Nucleic Acids Res. 25(21):4429 (1997)]. Nucleic Acids Res. 25: 2543–2545.

    Article  PubMed  CAS  Google Scholar 

  20. U. A. Betz, C. A. Vosshenrich, K. Rajewsky, and W. Muller (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol 6: 1307–1316.

    Article  PubMed  CAS  Google Scholar 

  21. X. Xu, K. U. Wagner, D. Larson, Z. Weaver, C. Li, T. Ried, L. Hennighausen, A. Wynshaw-Boris, and C. X. Deng (1999). Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet 22: 37–43.

    Article  PubMed  CAS  Google Scholar 

  22. K. U. Wagner (1998). Adenoviral and transgenic approaches to delete genes from mammary tissue via Crelox recombination. Workshop on Conditional Genetic Technologies in the Mouse, Cold Spring Harbor Laboratory, August 31-September 2, 1998. The multimedia online lecture (audio and slide presentation) is accessible at http://www.leadingstrand.org.

  23. N. Motoyama, E Wang, K. A. Roth, H. Sawa, K. Nakayama, I. Negishi, S. Senju, Q. Zhang, and S. Fujii (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  24. L. A. Chodosh (1998). Expression of BRCA1 and BRCA2 in normal and neoplastic cells. J. Mammary Gland Biol 3 (4): 389–402.

    Article  CAS  Google Scholar 

  25. L. St.-Onge, P. A. Furth, and P. Gruss (1996). Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24: 3875–3877.

    Article  PubMed  CAS  Google Scholar 

  26. Y. Zhang, C. Riesterer, A. M. Ayrall, E Sablitzky, T. D. Littlewood, and M. Reth (1996). Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24: 543–548.

    Article  PubMed  CAS  Google Scholar 

  27. C. Kellendonk, E Tronche, A. P. Monaghan, P. O. Angrand, E Stewart, and G. Schutz (1996). Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24: 1404–1411.

    Article  PubMed  CAS  Google Scholar 

  28. J. Brocard, R. Feil, P. Chambon, and D. Metzger (1998). A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26: 4086–4090.

    Article  PubMed  CAS  Google Scholar 

  29. Y. Kanegae, G. Lee, Y. Sato, M. Tanaka, M. Nakai, T. Sakaki, S. Sugano, and I. Saito (1995). Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23: 3816–3821.

    Article  PubMed  CAS  Google Scholar 

  30. Y. Wang, L. A. Krushel, and G. M. Edelman (1996). Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. U.S.A 93: 3932–3936.

    Article  PubMed  CAS  Google Scholar 

  31. Y. H. Lee, B. Sauer, P. E Johnson, and E J. Gonzalez (1997). Disruption of the c/ebp alpha gene in adult mouse liver. Mol. Cell Biol 17: 6014–6022.

    PubMed  CAS  Google Scholar 

  32. M. Li, K. U. Wagner, and P. A. Furth (1999). Transfection of primary mammary epithelial cells by viral and nonviral methods, Chapter 21 this volume.

    Google Scholar 

  33. R. J. Parks, L. Chen, M. Anton, U. Sankar, M. A. Rudnicki, and F. L. Graham (1996). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. U.S.A 93: 13565–13570.

    Article  PubMed  CAS  Google Scholar 

  34. M. Lakso, J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt, and H. Westphal (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. U.S.A 93: 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  35. A. Nagy, C. Moens, E. Ivanyi, J. Pawling, M. Gertsenstein, A. K. Hadjantonakis, M. Pirity, and J. Rossant (1998). Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol 8: 661–664.

    Article  PubMed  CAS  Google Scholar 

  36. E. N. Meyers, M. Lewandoski, and G. R. Martin (1998). An FgfS mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet 18: 136–141.

    Article  PubMed  CAS  Google Scholar 

  37. E Soriano (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet 21: 70–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, KU., Rucker, E.B., Hennighausen, L. (2000). Adenoviral and Transgenic Approaches for the Conditional Deletion of Genes from Mammary Tissue. In: Ip, M.M., Asch, B.B. (eds) Methods in Mammary Gland Biology and Breast Cancer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4295-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4295-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6927-1

  • Online ISBN: 978-1-4615-4295-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics