Advertisement

Unfolding Forces of Titin and Fibronectin Domains Directly Measured by AFM

  • Matthias Rief
  • Mathias Gautel
  • Hermann E. Gaub
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

AFM-based Single Molecule Force Spectroscopy provides a new tool for probing the mechanical properties of single molecules. In this chapter we show that the unfolding forces of single protein domains can be directly measured. Unfolding forces give new insight into protein stability that cannot be deduced from thermodynamic measurements. A comparison between the unfolding forces measured in Ig domains of the muscle protein titin and those measured in fibronectin Type III domains reveals an extraordinarily high stability of titin domains.

Keywords

Atomic Force Microscope Persistence Length Fibronectin Type Single Protein Domain Wormlike Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bustamante C, Marko JF, Siggia ED, Smith S. Entropic Elasticity of 1-Phage DNA. Science 1994;265:1599–1600.PubMedCrossRefGoogle Scholar
  2. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM. Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 1999;96:3694–9.PubMedCrossRefGoogle Scholar
  3. Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J-L, Chatenay D, Caron F. DNA: an extensible molecule. Science 1996;271:792–794.PubMedCrossRefGoogle Scholar
  4. Florin E-L, Moy VT, Gaub HE. Adhesive forces between individual ligand-receptor pairs. Science 1994;264:415–417.PubMedCrossRefGoogle Scholar
  5. Grubmüller H, Heymann B, Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 1995;271:997–999.CrossRefGoogle Scholar
  6. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 1996;93:3477–3481.PubMedCrossRefGoogle Scholar
  7. Hynes RO. Fibronectins New York: Springer-Verlag, 1990.CrossRefGoogle Scholar
  8. Kellermayer MS, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1112–1116.PubMedCrossRefGoogle Scholar
  9. Li H, Rief M, Oesterhelt F, Gaub HE. Single-molecule force spectroscopy on xanthan by AFM. Advanced Materials 1998;10:316–319.CrossRefGoogle Scholar
  10. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.PubMedCrossRefGoogle Scholar
  11. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 1998;75:662–71.PubMedCrossRefGoogle Scholar
  12. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM. The molecular elasticity of the extracellular matrix protein tenascin. Nature 1998;393:181–185.PubMedCrossRefGoogle Scholar
  13. Plaxco KW, Spitzfaden C, Campbell ID, Dobson CM. Rapid refolding of a proline-rich all β-sheet fibronectin type III module. Proc Natl Acad Sci 1996;93:10703–10706.PubMedCrossRefGoogle Scholar
  14. Politou AS, Thomas DJ, Pastore A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 1995;69:2601–2610.PubMedCrossRefGoogle Scholar
  15. Rief M, Gautel M, Schemmel A, Gaub HE. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J 1998;75:3008–14.PubMedCrossRefGoogle Scholar
  16. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997a;276:1109–1112.PubMedCrossRefGoogle Scholar
  17. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single molecule force spectroscopy on polysaccharides by AFM. Science 1997b;275:1295–1297.PubMedCrossRefGoogle Scholar
  18. Rief M, Pascual J, Saraste M, Gaub HE. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 1999;286:553–61.PubMedCrossRefGoogle Scholar
  19. Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996;271:795–798.PubMedCrossRefGoogle Scholar
  20. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997;387:308–312PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Matthias Rief
    • 1
  • Mathias Gautel
    • 2
  • Hermann E. Gaub
    • 3
  1. 1.Stanford University School of MedicineStanfordUSA
  2. 2.Biological Structures DivisionEMBLHeidelbergGermany
  3. 3.Ludwig-MaximiliansUniversität MünchenGermany

Personalised recommendations