Advertisement

Assembly of Myofibrils in Cardiac Muscle Cells

  • Joseph W. Sanger
  • Joseph C. Ayoob
  • Prokash Chowrashi
  • Daniel Zurawski
  • Jean M. Sanger
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

How do myofibrils assemble in cardiac muscle cells? When does titin first assemble into myofibrils? What is the role of titin in the formation of myofibrils in cardiac muscle cells? This chapter reviews when titin is first detected in cultured cardiomyocytes that have been freshly isolated from embryonic avian hearts. Our results support a model for myofibrillogenesis that involves three stages of assembly: premyofibrils, nascent myofibrils and mature myofibrils. Titin and muscle thick filaments were first detected associated with the nascent myofibrils. The Z-band targeting site for titin is localized in the N-terminus of titin. This region of titin binds alpha-actinin and less avidly vinculin. Thus the N-terminus of titin via its binding to alpha-actinin, and vinculin could also help mediate the costameric attachment of the Z-bands of mature myofibrils to the nearest cell surfaces.

Keywords

Thick Filament Myosin Filament Nonmuscle Myosin Nonmuscle Cell Embryonic Cardiomyocytes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayoob JC, Turnecioglu KK, Mittal B, Sanger JM, Sanger JW. Targeting of cardiac muscle titin fragments to the Z-bands and dense bodies of living muscle and non-muscle cells. Cell Motil Cytoskel 2000;45:67–82.CrossRefGoogle Scholar
  2. Bloor JW, Kiehart D. Nonsarcomeric myosin II, PS2 integrin and myogenesis. Mol Biol Cell 1998;9:146a.Google Scholar
  3. Chacko S. DNA synthesis, mitosis and differentiation in cardiac myogenesis. Develop Biol 1973;35:1–18.PubMedCrossRefGoogle Scholar
  4. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 1994;263:802–805.PubMedCrossRefGoogle Scholar
  5. Claycomb WC, Palazzo MC. Culture of the terminally differentiated adult cardiac muscle cell: A light and scanning electron microscope study. Dev Bio 1980;80:466–482.CrossRefGoogle Scholar
  6. Clubb FJ, Bishop SP. Formation of binucleated myocardial cells in the neonatal rat. Lab Invest 1984;50:571–577.PubMedGoogle Scholar
  7. Conrad AH, Clark WA, Conrad GW. Subcellular compartmentalization of myosin isoforms in embryonic chick ventricle myocytes during cytokinesis. Cell Motil Cytoskel 1991;19:189–206.CrossRefGoogle Scholar
  8. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci USA 1997;94:9493–9498.PubMedCrossRefGoogle Scholar
  9. Dabiri GA, Turnacioglu KK, Ayoob JC, Sanger JM, Sanger JW. Transfections of primary muscle cell cultures with plasmids coding for GFP linked to full length and truncated muscle proteins. In Green Fluorescent Proteins, Methods in Cell Biology, KF Sullivan and SA Kay, eds. New York: Academic Press 1999a;58:239–260.Google Scholar
  10. Dabiri GA, Ayoob JC, Turnacioglu KK, Sanger JM, Sanger JW. Use of Green Fluorescent Proteins linked to cytoskeletal proteins to analyze myofibrillogenesis in living cells. Methods in Enzymology(Optical Imaging and Green Fluorescent Proteins), PM Coon, ed. New York: Academic Press 1999b;302:171–186.Google Scholar
  11. Danowski BA, Inimaka-Yoshida K, Sanger JM, Sanger JW. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 1992;118:1411–1420.PubMedCrossRefGoogle Scholar
  12. Devlin RB, Emerson CP Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell 1978;13:599–611.PubMedCrossRefGoogle Scholar
  13. Dome JS, Mittal B, Pochapin MB, Sanger JM, Sanger JW. Incorporation of fluorescently labeled actin and tropomyosin into muscle cells. Cell Differentiation 1988;23:37–52.PubMedCrossRefGoogle Scholar
  14. Eilersten KJ, Kazmierski ST, Keller CS. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 1994;26:1201–1210.Google Scholar
  15. Eilersten KJ, Kazmierski ST, Keller CS. Interaction of alpha-actinin with cellular titin. Eur J Cell Biol 1997;74:361–354.Google Scholar
  16. Epstein HF, Fischman DA. Molecular analysis of protein assembly in muscle development. Science 1991;251:1039–1044.PubMedCrossRefGoogle Scholar
  17. Ferrari MB, Ribbeck K, Hagler DJ, Spitzer NC. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J Cell Biol 1998;141:1349–1356.PubMedCrossRefGoogle Scholar
  18. Gautel M, Goulding D, Bullard B, Weber K, Furst DO. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 1996;109:2747–2754.PubMedGoogle Scholar
  19. Granger BL, Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 1979;18:1059–1063.CrossRefGoogle Scholar
  20. Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules and intermediate filaments. Biophys J 1995;68:1027–1044.PubMedCrossRefGoogle Scholar
  21. Gregorio CC, Trombitás K, Center T, Kolmerer B, Stier G, Kunke K, Sizuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.PubMedCrossRefGoogle Scholar
  22. Hill CS, Duran S, Lin Z, Weber K, Holtzer H. Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 1986,103:2185–2196.PubMedCrossRefGoogle Scholar
  23. Holtzer H, Marshall JM, Finck H. An analysis of myogenesis by the use of fluorescent antimyosin. J Biochem Biochem Cytol 1957;3:705–724.CrossRefGoogle Scholar
  24. Kaneko H, Okamoto M, Goshima K. Structural changes of myofibrils during mitosis of newt embryonic myocardial cells in culture. Exp Cell Res 1984;153:483–498.PubMedCrossRefGoogle Scholar
  25. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle untrastructure and elasticity. Science 1995;270:293–296.PubMedCrossRefGoogle Scholar
  26. Li F, Wang X, Bunger PC, Gerdes AM. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J Mol Cell Cardiol 1997;29:1541–1551.PubMedCrossRefGoogle Scholar
  27. LoRusso SM, Rhee D, Sanger JM, Sanger JW. Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskel 1997;37:363–377.CrossRefGoogle Scholar
  28. Maher PA, Cox GF, Singer SJ. Zeugmatin: a high molecular weight protein associated with Z lines in adult and early embryonic striated muscle. J Cell Biol 1985;101:1871–1883.PubMedCrossRefGoogle Scholar
  29. Maruyama K. Connectin/titin, giant elastic protein of muscle. Biophys Chem 1994;50:73–85.PubMedCrossRefGoogle Scholar
  30. Mondello MR, Bramanti P, Cutroneo G, Santoro G, DiMauro D, Anastasi G. Immunolocalization of the costameres in human skeletal muscle: confocal scanning laser microscope investigations. Anat Rec 1996;245:481–487.PubMedCrossRefGoogle Scholar
  31. Mues A, van der Ven PFM, Young P, Fürst DO, Gautel M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformational-dependent way with telethonin. FEBS Letts 1998;428:111–114.CrossRefGoogle Scholar
  32. Murakami N, Trenkner E, Elzinka M. Changes in expression of nonmuscle myosin heavy chain isoforms during muscle and nonmuscle tissue development. Devel Biol 1993;157:19–27.CrossRefGoogle Scholar
  33. Ohtsuka H, Yajima H, Maruyama K, Kimura S. The N-terminal z repeat of connectin/titin binds to the C-terminal region of alpha-actinin. Biochem Biophys Res Comm 1997;235:1–3.PubMedCrossRefGoogle Scholar
  34. Pardo JV, Siliciano JD, Craig SW. Vinculin is a component of an extensive myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 1983;97:1081–1088.PubMedCrossRefGoogle Scholar
  35. Pollard TD. Electron microscopy of synthetic myosin filaments. Evidence for cross-bridge flexibility and copolymer formation. J Cell Biol 1975;67:93–104.PubMedCrossRefGoogle Scholar
  36. Rhee D, Sanger JM, Sanger JW. The premyofibril: evidence for its role in myofibrillogenesis Cell Motil Cytoskel1994;28:1–24.CrossRefGoogle Scholar
  37. Sanger JW, Mittal B, Sanger JM. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J Cell Biol 1984a;98:825–833.PubMedCrossRefGoogle Scholar
  38. Sanger JW, Mittal B, Sanger JM. Formation of myofibrils in spreading chick cardiac myocytes Cell Motil Cytoskel 1984b;4:405–416.CrossRefGoogle Scholar
  39. Sanger JM, Mittal B, Pochapin MB, Sanger JW. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 1986a;102:2053–2066.PubMedCrossRefGoogle Scholar
  40. Sänger JM, Mittal B, Pochapin MB, Sanger JW. Observations of microfilament bundles in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Sci 1986b;Suppl 5:17–44.Google Scholar
  41. Sänger JM, Mittal B, Meyer TW, Sanger JW. Use of fluorescent probes to study myofibrillogenesis. In Cellular and Molecular Biology of Muscle Development, L Kedes and F Stockdale, eds. New York: Alan R Liss Inc 1989a;221–235.Google Scholar
  42. Sänger JM, Mittal B, Dome JS, Sanger JW. Analysis of cell division using fluorescently labeled actin and myosin in living PtK2 cells. Cell Motil Cytoskel 1989b;14:201–219.CrossRefGoogle Scholar
  43. Sanger JM, Dabiri G, Mittal B, Kowalski MA, Haddad JG, Sanger JW. Disruption of microfilament organization in living nonmuscle cells by microinjection of plasma vitamin D-binding protein or DNase I. Proc Natl Acad Sci USA 1990,87:5474–5478.PubMedCrossRefGoogle Scholar
  44. Sanger JM, Rhee D, Sanger JW. Cleavage furrows and premyofibrils in embryonic cardiomyocytes. Mol Biol Cell 1993;4:53a.Google Scholar
  45. Sanger JM, Dome JS, Hock RS, Mittal B, Sanger JW, Occurrence of fibers and their association with talin in the cleavage furrows of PtK2 cells. Cell Motil Cytoskel 1994a;27:26–40.CrossRefGoogle Scholar
  46. Sanger JM, Rhee D, Leonard M, Price M, Zhukarev V, Shuman H, Sanger JW. Assembly of myofibrils and cleavage furrows in cardiomyocytes. Mol Biol Cell 1994b;5:165a.Google Scholar
  47. Sanger JW, Zhukarev V, Sanger JM. Myofibrillogenesis and the surface attachments of Z-bands. Mol Biol Cell 1997;8:375a.Google Scholar
  48. Schultheiss T, Lin ZX, Lu MH, Murray J, Fischman DA, Holtzer H. Differential distribution of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 1992;117:1023–1029.CrossRefGoogle Scholar
  49. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregario CC, Labeit D, Suzuki K, Labeit S. Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: Implications for the nature of vertebrate Z-discs. J Mol Biol 1997;207:688–695.CrossRefGoogle Scholar
  50. Tokuyasu KT, Maher PA. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 1987;105:2781–2793.PubMedCrossRefGoogle Scholar
  51. Trinick J. Titin and nebulin: protein rulers in muscle? Trends Cell Biol 1994;19:405–408.CrossRefGoogle Scholar
  52. Tullio AN, Accili D, Ferrans VJ, Yu Z-X, Takeda KA, Grinberg A, Westphal H, Preston YA, Adelstein RS. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci USA 1997;94:12407–12412.PubMedCrossRefGoogle Scholar
  53. Turnacioglu K, Mittal B, Sanger JM, Sanger JW. Partial characterization and DNA sequence of zeugmatin. Cell Motil Cytoske 1996;34:108–121.CrossRefGoogle Scholar
  54. Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW. Zeugmatin is part of the Z-band region of titin. Cell Struct Funct 1997a;22:73–82.PubMedCrossRefGoogle Scholar
  55. Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW. An N-terminal fragment of titin coupled to Green Fluorescent Protein localizes to Z-bands in living muscle cells: Overexpression leads to myofibril disassembly. Mol Biol Cell 1997b;8:705–717.PubMedGoogle Scholar
  56. Turnacioglu KK, Mittal B, Ayoob JC, Sanger JM, Sanger JW. Targeting of titin to the Z-bands of cardiomyocytes. Mol Biol Cell 1997c;8:357a.Google Scholar
  57. Van Bilsen M, Chien KR. Growth and hypertrophy of the heart: towards an understanding of cardiac specific gene expression. Cardiovasc Res 1993;27:1140–1149.PubMedCrossRefGoogle Scholar
  58. Wang S, Greaser ML, Schulty E, Bulinski JC, Lin JJ, Lessard JL. Studies on cardiac myofibrillobenesis with antibodies to titin, actin, tropomyosin and myosin. J Cell Biol 1988;107:1075–1083.PubMedCrossRefGoogle Scholar
  59. Young PY, Ferguson C, Banuelos S, Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 1998;17:1614–1624.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Joseph W. Sanger
    • 1
  • Joseph C. Ayoob
    • 1
  • Prokash Chowrashi
    • 1
  • Daniel Zurawski
    • 1
  • Jean M. Sanger
    • 1
  1. 1.Department of Cell and Developmental BiologyUniversity of Pennsylvania, School of MedicinePhiladelphiaUSA

Personalised recommendations