Skip to main content

Probing the Functional Roles of Titin Ligands in Cardiac Myofibril Assembly and Maintenance

  • Chapter
Elastic Filaments of the Cell

Abstract

Sarcomeres of cardiac muscle are comprised of numerous proteins organized in an elegantly precise order. The exact mechanism of how these proteins are assembled into myofibrils during heart development is not yet understood, although existing in vitro and in vivo model systems have provided great insight into this complex process. It has been proposed by several groups that the giant elastic protein titin acts as a “molecular template” to orchestrate sarcomeric organization during myofibrillogenesis. Titin’s highly modular structure, composed of both repeating and unique domains that interact with a wide spectrum of contractile and regulatory ligands, supports this hypothesis. Recent functional studies have provided clues to the physiological significance of the interaction of titin with several titin-binding proteins in the context of live cardiac cells. Improved models of cardiac myofibril assembly, along with the application of powerful functional studies in live cells, as well as the characterization of additional titin ligands, is likely to reveal surprising new functions for the titin third filament system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antin PB, Taylor RG, Yatskievych TA. Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 1994;200:144–153.

    Article  PubMed  CAS  Google Scholar 

  • Ayme-Southgate A, Vigoreaux J, Benian G, Pardue ML. Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc NatlAcad Sci USA 1991;88:7973–7977.

    Article  CAS  Google Scholar 

  • Benian GM, Kiff JE, Neckelmann N, Moerman DG, Waterston RH. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature 1989;342:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Bennett CF. Antisense research. Science 1996;271:434.

    Article  PubMed  CAS  Google Scholar 

  • Bishop SP, Anderson PG, Tucker DC. Morphological development of the rat heart growing in oculo in the absence of hemodynamic work load. Circ Res 1990;66:84–102.

    Article  PubMed  CAS  Google Scholar 

  • Bonne G, Carrier L, Richard P, Hainque B, Schwartz K. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 1998;83:580–593.

    Article  PubMed  CAS  Google Scholar 

  • Bouche M, Goldfme SM, Fischman DA. Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. J Cell Biol 1988;107:587–596.

    Article  PubMed  CAS  Google Scholar 

  • Choudhury M, Bag J. Stabilization of slow troponin C polypeptide compensates for its reduced synthesis in antisense oligodeoxynucleotide-treated cells. Nucleic Acids Res 1998;26:4765–4770.

    Article  PubMed  CAS  Google Scholar 

  • Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci USA 1997;19:9493–9498.

    Article  Google Scholar 

  • DeHaan RL. Migration patterns of the precardiac mesoderm in the early chick embryo. Exptl Cell Res 1963;29:544–560.

    Article  Google Scholar 

  • Dlugosz AA, Antin PB, Nachmias VT, Holtzer H. The relation between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 1984;99:2268–2278.

    Article  PubMed  CAS  Google Scholar 

  • Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 1998;7:1083–90.

    Article  PubMed  CAS  Google Scholar 

  • Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard J-C. Myofibrillogenesis in the developing chicken heart: assembly of Z-disc, M-line and the thick filaments. J Cell Sci 1999,112:1529–1539.

    PubMed  CAS  Google Scholar 

  • Eilertsen KJ, Keller TC 3rd. Identification and characterization of two huge protein components of the brush border cytoskeleton: evidence for a cellular isoform of titin. J Cell Biol 1992;119:549–557.

    Article  PubMed  CAS  Google Scholar 

  • Eilertsen KJ, Kazmierski S, Keller TC 3rd. Interaction of alpha-actinin with cellular titin. Eur J Cell Biol 1997;74:361–364.

    PubMed  CAS  Google Scholar 

  • Epstein HF, Fischman DA. Molecular analysis of protein assembly in muscle development. Science 1991;251:1039–1044.

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP. Stretching single protein molecules: titin is a weird spring. Science 1997;276:1090–1092.

    Article  PubMed  CAS  Google Scholar 

  • Fowler VM. Regulation of actin filament length in erythrocytes and striated muscle. Curr Opin Cell Biol 1996;8:86–96.

    Article  PubMed  CAS  Google Scholar 

  • Fulton AB, Alftine C. Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc Func 1997;22:51–58.

    Article  CAS  Google Scholar 

  • Funatsu T, Higuchi H, Ishiwata, S. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 1990;110:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 1993;120:711–724.

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J Cell Biol 1988;106:1563–1572.

    Article  PubMed  Google Scholar 

  • Fürst DO, Nave R, Osborn M, Weber K. Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A-band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils. J Cell Sci 1989;94:119–125.

    PubMed  Google Scholar 

  • Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, Labeit S, Mygland A, Gilhus NE, Aarli JA. Titin antibodies in myasthenia gravis: Identification of a major auto-immunogenic region of titin. Neurology 1993;43:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  • Gautel M, Goulding D, Bullard B, Weber K, Fürst DO. The central Z-disc region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 1996;109:2747–2754.

    PubMed  CAS  Google Scholar 

  • Geisterfer-Lowrance AA, Christie M, Conner DA, Ingwal JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science 1996,272:731–734.

    Article  PubMed  CAS  Google Scholar 

  • Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68:1027–1044.

    Article  PubMed  CAS  Google Scholar 

  • Granzier H, Kellermayer M, Trombitás, K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73:2043–2053.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC. Models of striated muscle thin filament assembly. Cell Struc Func 1997;22:191–195.

    Article  CAS  Google Scholar 

  • Gregorio CC, Fowler VM. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol 1995;129:683–695.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Fowler VM. Tropomodulin function and thin filament assembly in cardiac myocytes. Trends Cardiovas Med 1996;6:136–141.

    Article  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z-disc; Its interaction with a novel 19 kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Weber A, Bondad M, Pennise CR, Fowler VM. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 1995,377:83–86.

    Article  PubMed  CAS  Google Scholar 

  • Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 1999;84:1339–1352.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature 1987;329:219–222.

    Article  PubMed  CAS  Google Scholar 

  • Hill CS, Lemanski LF. Immunoelectron microscopic localization of alpha actinin and actin in embryonic hamster heart cells. Euro J Cell Biol 1985;39:300–312.

    Google Scholar 

  • Hiruma T, Hirakow R. An ultrastructural topographical study on myofibrillogenesis in the heart of the chick embryo during pulsation onset period. Dev Dyn 1985;196:291–299.

    Google Scholar 

  • Holtzer H, Hijikata T, Lin ZX, Zhang, ZQ, Holtzer S, Protasi F, Franzini-Armstrong C, Sweeney HL. Independent assembly of 1.6μm long bipolar MHC filaments and I-Z-I bodies. Cell Struc Func 1997;22:83–93.

    Article  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME, and Podolski RJ. A physiological role for titin and nebulin in skeletal muscle. Nature 1986;323:160–164.

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Luo G, Zhang JZ, Herrera AH. Nebulin and nebulin-related proteins in striated muscle. Adv Biophys 1996;33:143–150.

    Article  PubMed  CAS  Google Scholar 

  • Houmeida A, Holt J, Tskhovrebova L, Trinick J. Studies of the interaction between titin and myosin. J Cell Biol 1995;131:1471–1481.

    Article  PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida K. Myofibrillogenesis in precardiac mesoderm expiant culture. Cell Struct Func 1997;22:45–49.

    Article  CAS  Google Scholar 

  • Jin JP. Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. J Biol Chem 1995;270:6908–6916.

    PubMed  CAS  Google Scholar 

  • Jones WK, Grupp IL, Doetschman T, Grupp G, Osinska H, Hewett TE, Boivin G, Gulick J, Ng WA, Robbins J. Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J Clin Invest 1996;98:1906–1917.

    Article  PubMed  CAS  Google Scholar 

  • Kass-Eisler A, Leinwand L. DNA and Adenovirus-mediated gene transfer into cardiac muscle. Methods Cell Biol 1998;52:423–437.

    Article  Google Scholar 

  • Keller TCS. Molecular bungees. Nature 1997;387:233–235.

    Article  PubMed  CAS  Google Scholar 

  • Kinbara K, Ishiura S, Tomioka S, Sorimachi H, Jeong S, Amano S, Kawasaki H, Kolmerer B, Kimura S, Labeit S, Suzuki K. Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J 1998;335:589–596.

    PubMed  CAS  Google Scholar 

  • Kolmerer B, Olivieri N, Witt CC, Herrmann BG, Labeit S. Genomic organization of the M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 1996;256:556–563.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin G. P., O’Toole BA, Lessard JL. Rescue of cardiac alpha-actin deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci USA 1997;94:4406–4411.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B. Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B, Linke W. The giant protein titin: emerging roles in physiology and pathophysiology. Circ Res 1997;80:290–294.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J 1992;11:1711–1716.

    PubMed  CAS  Google Scholar 

  • Li H, Choudhary SK, Milner DJ, Munir ML, Kuisk IR, Capetanaki Y. Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 1994;124:827:841.

    PubMed  Google Scholar 

  • Lin Z, Kijikata T, Zhang Z, Choi J, Holtzer S, Sweeney HS, Holtzer H. Dispensability of the actin-binding site and spectrin repeats for targeting sarcomeric α-actinin into maturing Z-bands in vivo: implications for in vitro binding studies. Development. 1998;199:291–308.

    Article  CAS  Google Scholar 

  • Lin Z, Holtzer S, Schultheiss T, Murray J, Masaki T, Fischman DA, Holtzer H. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes. J Cell Biol 1989;10:2355–2367.

    Article  Google Scholar 

  • Linke WA, Granzier H. A spring tale: new facts on titin elasticity. Biophys J 1998;75:2613–2614.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M. Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 1997;73:905–919.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Witt C, Labeit S, Gregorio CC. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;146:631–644.

    Article  PubMed  CAS  Google Scholar 

  • Littlefield R, Fowler VM. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu Rev Dev Biol 1998;14:487–525.

    Article  CAS  Google Scholar 

  • Lough JW, Markwald RR. A culture model for cardiac morphogenesis. Ann NY Acad Sci 1990;588:421–424.

    Article  Google Scholar 

  • Luo G, Zhang JQ, Nguyen TP, Herrera AH, Paterson B, Horowits R. Complete cDNA sequence and tissue localization of N-RAP, a novel nebulin-related protein of striated muscle. Cell Motil Cytoskel 1997;38:75–90.

    Article  CAS  Google Scholar 

  • Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J cell Biol 1998;141:321–333.

    Article  PubMed  CAS  Google Scholar 

  • Manasek FJ. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 1968;125:329–365.

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR. Distribution and relationship of precursor Z material to organizing myofibrillar bundles in embryonic rat and hamster ventricular myocytes. J Mol Cell Cardiol 1973;5:341–350.

    Article  PubMed  CAS  Google Scholar 

  • Martin XJ, Wynne DG, Glennon PE, Moorman A, Boheler KR. Regulation of expression of contractile proteins with cardiac hypertrophy and failure. Mol Cell Biochem 1996;157:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K. Connectin/titin, giant elastic protein of muscle. Faseb J 1997;11:341–345.

    PubMed  CAS  Google Scholar 

  • Maruyama K, Matsubara R, Natori Y, Nonomura S, Kimura S, Ohashi K, Murakami F, Handa S, Eguchi G. Connectin, an elastic protein of muscle. J Biochem 1977;82:317–337.

    PubMed  CAS  Google Scholar 

  • Maruyama K, Yoshioka T, Higuchi H, Ohashi K, Kimura S, Natori R. Connectin filaments link thick filaments and Z-lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 1985;101:2167–2172.

    Article  PubMed  CAS  Google Scholar 

  • Mayans O, van der Ven P, Wilm M, Mues A, Young P, Fürst DO, Wilmanns M, Gautel M. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 1998;395:863–869.

    Article  PubMed  CAS  Google Scholar 

  • McKenna N, Meigs JB, Wang YL. Identical distribution of fluorescently labeled brain and muscle actins in living cardiac fibroblasts and myocytes. J Cell Biol 1985a;100:292–296.

    Article  PubMed  CAS  Google Scholar 

  • McKenna N, Meigs JB, Wang YL. Exchangeability of alpha-actin in living cardiac fibroblasts and muscle cells. J Cell Biol 1985b;101:2223–2232.

    Article  PubMed  CAS  Google Scholar 

  • Michele DE, Albayya P, Metzger JM. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J Cell Biol 1999;145:1483–1495.

    Article  PubMed  CAS  Google Scholar 

  • Millevoi S, Trombitás K, Kostin S, Schaper J, Pelin K, Kolmerer B, Granzier H, Labeit S. Characterization of Nebulette and Nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 1998;282:111–123.

    Article  PubMed  CAS  Google Scholar 

  • Mittal B, Sanger JM, Sänger JW. Visualization of myosin in living cells. J Cell Biol 1987;105:1753–1760.

    Article  PubMed  CAS  Google Scholar 

  • Moncman CL, Wang K. Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cyto 1995;32:205–225.

    Article  CAS  Google Scholar 

  • Mues A, van der Ven PF, Young P, Fürst DO, Gautel M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 1998;428:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Ng WA, Doetschman T, Lessard JL. Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells. Pediatr Res 1997;41:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Obermann WM, Gautel M, Weber K, Fürst DO. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 1997;16:211–220.

    Article  PubMed  CAS  Google Scholar 

  • Obermann WMJ, Gautel M, Steiner F, van der Ven PFM, Weber K, Fürst DO. The structure of the sarcomeric M band: localization of defined domains of myomesin, M protein, and the 250 kD carboxy terminal region of titin by immunoelectron microscopy. J Cell Biol 1996;134:1441–1453.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka H, Yajima H, Kimura S, Maruyama K. Binding of the N terminal fragment of connectin/ titin to alpha-actinin as revealed by yeast two-hybrid systems. FEBS Lett 1997;401:65–67.

    Article  PubMed  CAS  Google Scholar 

  • Ojala J, Choudhury M, Bag J. Inhibition of troponin C production without affecting other muscle protein synthesis by the antisense oligonucleotide. Antisense Nucleic Acid Drug Dev 1997;7:31–8.

    Article  PubMed  CAS  Google Scholar 

  • Okagaki T, Weber FE, Fischman DA, Vaughan KT, Mikawa T, Reinach FC. The major myosin-binding domain of skeletal muscle MyBP-C (Cprotein) resides in the COOH-terminal, immunoglobulin C2 motif. J Cell Biol 1993;123:619–626.

    Article  PubMed  CAS  Google Scholar 

  • Peckham M, Young P, Gautel M. Constitutive and variable regions of Z-disc titin/connectin in myofibril formation: a dominant-negative screen. Cell Struc Func 1997;22:95–101.

    Article  CAS  Google Scholar 

  • Rethinasamy P, Muthuchamy M, Hewett T, Boivin G, Wolska BM, Evans C, Solaro RJ, Wieczorek DF. Molecular and physiological effects of alpha-tropomyosin ablation in the mouse. Circ Res 1998;82:116–123.

    Article  PubMed  CAS  Google Scholar 

  • Rhee D, Sanger JM, Sänger JW. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskel1994;28:1–24.

    Article  CAS  Google Scholar 

  • Robbins J, Gulick J, Sanchez A, Howies P, Doetschman T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J Biol Chem 1990;265:11905–11909.

    PubMed  CAS  Google Scholar 

  • Rudy DE, Yatskievych TA, Antin PB, Gregorio CC. Investigation of the assembly of thick, thin and titin filaments in chick precardiac explants. Mol Biol Cell 1999;10:980.

    Google Scholar 

  • Sanger JW, Mittal B, Sanger JW. Analysis of myofiber structure and assembly using fluorescently labeled contractile proteins. J Cell Biol 1984;98:825–833.

    Article  PubMed  CAS  Google Scholar 

  • Sanger JM, Mittal B, Pochapin MB, Sanger JW. Myofibrillogeneis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 1986;102:2053–2066.

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Hug C, Cooper JA. Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J Cell Biol 1995;128:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss T, Lin Z, Lu M-H, Murray J, Fischman DA, Weber K, Masaki M, Imamura M, Holtzer H. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 1990;110:1159–1172.

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Komiyama M, Begum S, Maruyama K. Development of connectin/titin and nebulin in striated muscles of chicken. Adv Biophys 1996;33:223–234.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi I, Takamatsu T, Fujita S. Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat Embryol 1995;191:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi I, Simpson DG, Carver W, Price R, Hirozane T, Terracio L, Borg TK. Vinculin is an essential component for normal myofibrillar arrangement in fetal mouse cardiac myocytes. J Mol Cell Cardiol 1997;29:2041–2052.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi I, Takamatsu T, Fujita S. 3-D observation of N-cadherin expression during cardiac myofibrillogenesis of the chick embryo using a confocal laser scanning microscope. Anat Embryol 1993;187:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Simpson DG, Decker ML, Clark WA, Decker RS. Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol 1993;123:323–336.

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 1995;270:31158–31162.

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, Linke WA, Suzuki K, Labeit SL. Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol 1997;270:688–695.

    Article  PubMed  CAS  Google Scholar 

  • Soteriou A, Gamage M, Trinick J. A survey of the interactions made by titin. J Cell Sci 1993;104:119–123.

    PubMed  CAS  Google Scholar 

  • Squire JM. Architecture and function in the muscle sarcomere. Curr Opin Struct Biol 1997;7:247–257.

    Article  PubMed  CAS  Google Scholar 

  • Sussman MA, Baquè UC-S, Daniels MP, Price RL, Simpson D, Terracio L, Kedes L. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ Res 1998;82:94–105.

    Article  PubMed  CAS  Google Scholar 

  • Tardiff JC, Factor SM, Tompkins BD, Hewett TE, Palmer BM, Moore RL, Schwartz S, Robbins J, Leinwand LA. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J Clin Invest 1998;101:2800–2811.

    Article  PubMed  CAS  Google Scholar 

  • Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, Seidman JG, Seidman C. Beta-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994;77:701–712.

    Article  PubMed  Google Scholar 

  • Tokuyasu KT, Maher PA. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibrillar stages. J Cell Biol 1987a;105:2781–2793.

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT, Maher PA. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 1987b;105:2795–2801.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J. Titin and nebulin protein rulers in muscle? Trends Biochem Sci 1994;19:405–408.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J. Cytoskeleton: titin as a scaffold and spring. Curr Biol 1996;6:258–260.

    Article  PubMed  CAS  Google Scholar 

  • Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near the Z-line titin attaches to actin while under tension. Am J Physiol 1997;273:C662–C670.

    PubMed  Google Scholar 

  • Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger, JW. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol Biol Cell 1997;8:705–717.

    PubMed  CAS  Google Scholar 

  • Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolofo D, Tiso N, Toppo S, Trevisan S, Lanfranchi G. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 1997;415:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Vigoreaux JO. The muscle Z-band: lessons in stress management J Muscle Res Cell Motil 1994;15:237–255.

    PubMed  CAS  Google Scholar 

  • Vikstrom KL, Factor SM, Leinwand LA. Mice expressing mutant myosing heavy chains are a model for familial hyptertrophic cardiomyopathy. Mol Med 1996,2:556–567.

    PubMed  CAS  Google Scholar 

  • Wagner RW. The state of the art in antisense research. Nat Med 1995;1:1116–1118.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McClure J, Tu A. Titin: Major myofibrillar component of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.

    Article  PubMed  CAS  Google Scholar 

  • Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 1996;33:123–134.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Knipfer M, Huang Q, van Heerden A, Hsu LC, Gutierrez G, Quian X, Stedman H. Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J Biol Chem 1996;271:4304–4314.

    Article  PubMed  CAS  Google Scholar 

  • Wang SM, Greaser ML, Schultz E, Bulinski JC, Lin JJ, Lessard JL. Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 1988;107:1075–1083.

    Article  PubMed  CAS  Google Scholar 

  • Westfall MV, Pasyk KA, Yule DI, Samuelson LC, Metzger JM. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil Cytoskel 1997;36:43–54.

    Article  CAS  Google Scholar 

  • Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989,205:263–268.

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Guanju J, Fleischmann B, Katus HA, Hescheler J, Franz WM. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 1997;29:1525–1539.

    Article  PubMed  CAS  Google Scholar 

  • Yajima H, Ohtsuka H, Kawamura Y, Kume H, Maruyama T, Abe H, Kimura S, Maruyama K. A 11.5 kb 5’-terminal cDNA sequence of chicken breast muscle connectin/titin reveals its Z-line binding region. Biochem Biophys Res Commun 1996;223:160–164.

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophie cardiomyopathy. J Clin Invest 1998;102:1292–300.

    Article  PubMed  CAS  Google Scholar 

  • Yatskievych TA, Ladd A, Antin PB. Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 1997;124:2561–2570.

    PubMed  CAS  Google Scholar 

  • Young P, Ferguson C, Banuelos S, Gautel M. Molecular structure of the sarcomeric Z-disc: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 1998;17:1614–1624.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

McElhinny, A.S., Labeit, S., Gregorio, C.C. (2000). Probing the Functional Roles of Titin Ligands in Cardiac Myofibril Assembly and Maintenance. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4267-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6916-5

  • Online ISBN: 978-1-4615-4267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics