Sequence and Mechanical Implications of Titin’s PEVK Region

  • Marion L. Greaser
  • Seu-Mei Wang
  • Mustapha Berri
  • Paul Mozdziak
  • Yashiyuki Kumazawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)


A widely used titin monoclonal antibody (9D10) was epitope mapped to the PEVK region in the I-band portion of titin. Sequence analysis of the titin PEVK region revealed a large number of 28 amino acid modules (termed “PPAK” repeats) alternating with glutamic acid rich segments. Species differences in cardiac rest tension could not be ascribed to differences in the PEVK length of the N2B titin isoform. The low rest tension generated by dog cardiac muscle also does not appear to be explained by the N2 and PEVK segment lengths in the N2A titin isoform.


Sarcomere Length Thick Filament Rest Tension Cardiac Titin Insect Flight Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ. Basic local alignment search tool. J Mol biol 1990;215:403–10.PubMedGoogle Scholar
  2. Erickson H. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 1994;91:10114–18.PubMedCrossRefGoogle Scholar
  3. Fabiato A, Fabiato F. Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 1978;72:667–99.PubMedCrossRefGoogle Scholar
  4. Franzini-Armstrong C. Details of the I-band structure as revealed by the localization of ferritin. Tissue & Cell 1970;2:327–38.CrossRefGoogle Scholar
  5. Furst DO, Osborn M, Nave R, Weber K. The organization of the titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J Cell Biol 1988;106:1563–72.PubMedCrossRefGoogle Scholar
  6. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 1996;385:11–4.PubMedCrossRefGoogle Scholar
  7. Granzier H, Helmes M, Trombitás K. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 1996;70:430–42.PubMedCrossRefGoogle Scholar
  8. Handel SE, Greaser ML, Schultz E, Wang S-M, Bulinski JC, Lin JJ-C, Lessard JL. Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and non-muscle isoforms of actin and tropomyosin. Cell & Tissue Res 1991;263:419–430.CrossRefGoogle Scholar
  9. Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem (Tokyo) 1988;104:504–8.Google Scholar
  10. Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale K, Whiting A, Trinick J. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 1990;345:273–6PubMedCrossRefGoogle Scholar
  11. Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J 1992;11:171–6.Google Scholar
  12. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–6.PubMedCrossRefGoogle Scholar
  13. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mündel P. Characterizing titin’s I-band Ig domain region as an entropic spring. J Cell Sci 1998;111:1567–74.PubMedGoogle Scholar
  14. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–33.PubMedCrossRefGoogle Scholar
  15. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S. Connectin, an elastic protein of muscle. Characterization and function. JBiochem (Tokyo) 1977;82:317–37.Google Scholar
  16. Matsumura K, Shimizu T, Mannen T, Maruyama K. The immunological homology between two filamentous cross-linker phosphoproteins, connectin and cross-bridge region of neurofilament-H, is not affected by the phosphorylation state. J Biochem (Tokyo) 1989;105:226–30.Google Scholar
  17. Mencarelli C, Magi B, Marzocchi B, Armellini D, Pallini V. Evolution of the “titin epitope” in neurofilament proteins. Comp Biochem Physiol 1991;100B:741–4.Google Scholar
  18. Ringkob TP, Marsh BB, Greaser ML. Change in titin position in postmortem bovine muscle. J Food Sci 1988,53:276–7.CrossRefGoogle Scholar
  19. Schaart G, Pieper FR, Kuijpers HJ, Bloemendal H, Ramaekers FC. Baby hamster kidney (BHK-21/ C13) cells can express striated muscle type proteins. Differentiation 1991;46:105–15.PubMedCrossRefGoogle Scholar
  20. Sebestyen MG, Wolff JA, Greaser ML. Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 1995;108:3029–37.PubMedGoogle Scholar
  21. Shimizu T, Matsumura K, Itoh Y, Mannen T, Maruyama Y An immunological homology between neurofilament and muscle elastic filament: a monoclonal antibody cross-reacts with neurofilament subunits and connectin. Biomed Res 1988;9:227–33.Google Scholar
  22. Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 1997;273:C662–70.PubMedGoogle Scholar
  23. Trombitás K, Greaser ML, Pollack GH. Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 1997;18:345–51.PubMedCrossRefGoogle Scholar
  24. Trombitás K, Greaser M, Labeit S, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: entrophic elasticity of both native and permanently unfolded molecular segments. J Cell Biol 1998a;140:853–9.PubMedCrossRefGoogle Scholar
  25. Trombitás K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 1998b;122:188–96.PubMedCrossRefGoogle Scholar
  26. van der Loop FT, Schaart G, Langmann H, Ramaekers FC, Viebahn C. Rearrangement of intercellular junctions and cytoskeletal proteins during rabbit myocardium development. Eur J Cell Biol 1995;68:62–9.PubMedCrossRefGoogle Scholar
  27. Wang K, McClure J, Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–702.PubMedCrossRefGoogle Scholar
  28. Wang S-M, Greaser ML. Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil 1985;6:293–312.PubMedCrossRefGoogle Scholar
  29. Wang S-M, Greaser ML, Schultz E, Bulinski JC, Lin JJ-C, Lessard JL. Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 1988;107:1075–83.PubMedCrossRefGoogle Scholar
  30. Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205:263–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Marion L. Greaser
    • 1
  • Seu-Mei Wang
    • 2
  • Mustapha Berri
    • 3
  • Paul Mozdziak
    • 1
  • Yashiyuki Kumazawa
    • 1
  1. 1.Muscle Biology LaboratoryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Dept of AnatomyNational Taiwan UniversityTaiwan
  3. 3.INRAToursFrance

Personalised recommendations