Molecular Tools for the Study of Titin’s Differential Expression

  • Thomas Centner
  • Francoise Fougerousse
  • Alexandra Freiburg
  • Christian Witt
  • Jacque S. Beckmann
  • Henk Granzier
  • Karoly Trombitás
  • Carol C. Gregorio
  • Siegfried Labeit
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)


Although vertebrate genomes appear to contain only one titin gene, a large variety of quite distinct titin isoforms are expressed in striated muscle tissues. The isoforms appear to be generated by a series of complex, not yet fully characterized differential splicing mechanisms. Here, we provide an overview of the titin-specific antibodies that have been raised by our laboratory to study individual differentially expressed isoforms of titin. The staining patterns obtained in different tissues will contribute to the identification of both the particular titin isoforms that are expressed in the different tissues, as well as their intracellular distributions. In addition, antibodies to titin that are available are rapidly allowing for the refinement of our knowledge of titin’s elastic spring properties. Knowledge of the nature and structure of vertebrate titins that may also be expressed in nonmuscle tissues may be broadened using these antibodies.


Thin Filament Immunoelectron Microscopy Study Titin Isoforms Cardiac Titin PEVK Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 1985;17:821–840.PubMedCrossRefGoogle Scholar
  2. Eilertsen KJ, Kazmierski ST, Keller TC III. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 1994;126:1201–1210.PubMedCrossRefGoogle Scholar
  3. Eilertsen KJ, Keller TC III. Identification and characterization of two huge protein components of the brush border cytoskeleton: Evidence for a cellular isoform of titin. J Cell Biol 1992;119:549–557.PubMedCrossRefGoogle Scholar
  4. Fabiato A, Fabiato F. Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 1978;72:677–699.CrossRefGoogle Scholar
  5. Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–1572.PubMedCrossRefGoogle Scholar
  6. Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, Labeit S, Mygland A, Gilhus NE, Aarli JA. Titin antibodies in myasthenia gravis: Identification of a major auto-immunogenic region of titin. Neurology 1993;43:1581–1585.PubMedCrossRefGoogle Scholar
  7. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. Febs Lett 1996;385:11–14.PubMedCrossRefGoogle Scholar
  8. Gautel M, Goulding D, Bullard B, Weber K, Fürst DO. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 1996;109:2747–2754.PubMedGoogle Scholar
  9. Granzier HL, Irving TC. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68:1027–1044.PubMedCrossRefGoogle Scholar
  10. Gregorio CC, Trombitás K, Kolmerer B, Stier G, Granzier H, Kunke K, Suzuki K, Obermayr F, Herrmann B, Sorimachi H, Labeit S. The N terminal of titin spans the Z-Disk. Its interaction with a novel 19 kDa ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.PubMedCrossRefGoogle Scholar
  11. Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.PubMedCrossRefGoogle Scholar
  12. Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence. Circ Res 1999;84:1339–1352.PubMedCrossRefGoogle Scholar
  13. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 1984;28:351–359PubMedCrossRefGoogle Scholar
  14. Holtzer H, Hijikata T, Lin ZX, Zhang ZQ, Holtzer S, Protasi F, Franzini-Armstrong C, Sweeney HL. Independent assembly of 1.6 μm long bipolar MHC filaments and I-Z-I bodies. Cell Struc Func 1997;22:83–93.CrossRefGoogle Scholar
  15. Horowits R, Kempner ES, Bisher ME, Podolski RJ. A physiological role for titin and nebulin in skeletal muscle. Nature 1986;323:160–164.PubMedCrossRefGoogle Scholar
  16. Horowits, R. Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 1992;61:392–398.PubMedCrossRefGoogle Scholar
  17. Jin JP. Cloned rat cardiac titin class I and class II motifs. Expression, purification, characterization, and interaction with F-actin. J Biol Chem 1995;270:6908–6916.PubMedGoogle Scholar
  18. Kolmerer B, Olivieri N, Witt CC, Herrmann BG, Labeit S. Genomic organization of the M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol.1996;256:556–563.PubMedCrossRefGoogle Scholar
  19. Labeit S, Kolmerer B. Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.PubMedCrossRefGoogle Scholar
  20. LeGrice SF, Grueninger-Leitch F Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem 1990;187:307–314.PubMedCrossRefGoogle Scholar
  21. Linke WA, Granzier H. A spring tale: new facts on titin elasticity. Biophys J 1998;75:2613–2614.PubMedCrossRefGoogle Scholar
  22. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.PubMedCrossRefGoogle Scholar
  23. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci. USA 1998;95:8052–8057.PubMedCrossRefGoogle Scholar
  24. Linke WA, Rudy DE, Centner T, Gautel M, Witt CC, Labeit S, Gregorio CC. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;146:631–644.PubMedCrossRefGoogle Scholar
  25. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–333.PubMedCrossRefGoogle Scholar
  26. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S, Eguchi G. Connectin, an elastic protein of muscle: characterization and function. J Biochem(Tokyo) 1977;82:317–337.Google Scholar
  27. Maruyama K. Connectin/titin, giant elastic protein of muscle. Faseb J 1997;11:341–345.PubMedGoogle Scholar
  28. Millevoi S, Trombitás K, Kostin S, Schaper J, Pelin K, Kolmerer B, Granzier H, Labeit S. Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-disks. J Mol Biol 1998;282:111–123.PubMedCrossRefGoogle Scholar
  29. Mues A, van der Ven PF, Young P, Fürst DO, Gautel M. Two immunoglobulin-like domains of the Z-disk portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 1998;428:111–114.PubMedCrossRefGoogle Scholar
  30. Obermann WM, Gautel M, Weber K, Fürst DO. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 1997;16:211–220.PubMedCrossRefGoogle Scholar
  31. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Araheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–1354.PubMedCrossRefGoogle Scholar
  32. Squire JM. Architecture and function in the muscle sarcomere. Curr Opin Struct Biol 1997;7:247–257.PubMedCrossRefGoogle Scholar
  33. Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 1995;270:31158–31162.PubMedCrossRefGoogle Scholar
  34. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, Labeit D, Linke WA, Suzuki S, Labeit S. Tissue-specific expression and α-actinin binding properties of the Z disk titin. Implications for the nature of vertebrate Z disks. J Mol Biol 1997;270:688–695.PubMedCrossRefGoogle Scholar
  35. Studier FW, Moffat BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986;189:113–130.PubMedCrossRefGoogle Scholar
  36. Trinick J. Titin as a scaffold and spring. Cytoskeleton. Curr Biol 1996;6:258–260.PubMedCrossRefGoogle Scholar
  37. Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: Entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998;140:853–859.PubMedCrossRefGoogle Scholar
  38. Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, Toppo, S, Trevisan S, Lanfranchi G. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 1997;415:163–168.PubMedCrossRefGoogle Scholar
  39. Wang K, McClure J, Tu A. Titin: Major myofibrillar component of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.PubMedCrossRefGoogle Scholar
  40. Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 1996;33:123–134.PubMedCrossRefGoogle Scholar
  41. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: A test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 1991;88:7101–7105.PubMedCrossRefGoogle Scholar
  42. Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205:263–8.PubMedCrossRefGoogle Scholar
  43. Witt CC, Olivieri N, Centner T, Kolmerer B, Millevoi S, Labeit D, Jockusch H, Pastore A, Labeit S. A survey of the primary structure and the interspecies conservation of I-band titin’s elastic elements in vertebrates. J Struc Biol 1998;122:1–10.CrossRefGoogle Scholar
  44. Young P, Ferguson C, Banuelos S, Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 1998;17:1614–1624.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Thomas Centner
    • 1
  • Francoise Fougerousse
    • 2
  • Alexandra Freiburg
    • 3
  • Christian Witt
    • 1
  • Jacque S. Beckmann
    • 2
  • Henk Granzier
    • 4
  • Karoly Trombitás
    • 4
  • Carol C. Gregorio
    • 5
  • Siegfried Labeit
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany
  2. 2.Genethon-URA1922EvryFrance
  3. 3.Institut für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum MannheimMannheimGermany
  4. 4.Department of Veterinary and Comparative Anatomy, Pharmacology and PhysiologyWashington State UniversityPullmanUSA
  5. 5.Departments of Cell Biology and Anatomy, and Molecular and Cellular BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations