Advertisement

From Connecting Filaments to Co-Expression of Titin Isoforms

  • Károly Trombitás
  • Alexandra Freiburg
  • Marion Greaser
  • Siegfried Labeit
  • Henk Granzier
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

The molecular basis of elasticity in insect flight muscle has been analyzed using both the mechanism of extensibility of titin filaments (Trombitás et al., J. Cell Biol. 1998;140:853–859), and the sequence of projectin (Daley et al., J. Mol. Biol. 1998;279:201–210). Since a PEVK-like domain is not found in the projectin sequence, it is suggested that the sarcomere elongation causes the slightly “contracted “ projectin extensible region to straighten without requiring Ig/Fn domain unfolding. Thus, the extensible region of the projectin may be viewed as a single entropic spring. The serially linked entropic spring model developed for skeletal muscle titin was applied to titin in the heart. The discovery of unique N2B sequence extension in physiological sarcomere length range (Helmes et al., Circ. Res. 1999;84:1339–1352) suggests that cardiac titin can be characterized as a serially linked three-spring system. Two different cardiac titin isoform ( N2BA and N2B) co-exist in the heart. These isoforms can be differentiated by immunoelectron microscopy using antibody against sequences C-terminal of the unique N2B sequence, which is present in both isoforms. Immunolabeling experiments show that the two different isoform are co-expressed within the same sarcomere.

Keywords

Thin Filament Flight Muscle Cardiac Titin Insect Flight Muscle PEVK Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullard B, Leonard K. Modular proteins of insect muscle. Adv Biophys 1996;33:211–221.PubMedCrossRefGoogle Scholar
  2. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombiteas K, Labeit S, Granzier H. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 2000;86:59–67.PubMedCrossRefGoogle Scholar
  3. Daley J, Southgate R, Ayme-Southgate A. Structure of the Drosophilaprojectin protein: isoforms and implication for projectin filament assembly. J Mol Biol 1998;279:201–210.PubMedCrossRefGoogle Scholar
  4. Erickson HP. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 1994;91:10114–10118.PubMedCrossRefGoogle Scholar
  5. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 1996;385:11–14.PubMedCrossRefGoogle Scholar
  6. Granzier HL, Wang K. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys J 1993;65:2141–2159.PubMedCrossRefGoogle Scholar
  7. Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73(4):2043–2053.PubMedCrossRefGoogle Scholar
  8. Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B. The NH2 terminus of titin spans the Z-disk: its interaction with a novel 19-kD ligand (t-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.PubMedCrossRefGoogle Scholar
  9. Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence titin is an adjustable spring. Circ Res 1999;84:1339–1352.PubMedCrossRefGoogle Scholar
  10. Helmes M, Trombitás K, Granzier H. Titin develops restorin force in rad cardiac myocytes. Circ Res 1996;79(3):619–626.PubMedCrossRefGoogle Scholar
  11. Horowits R. The physiological role of titin in striated muscle. Rev Physiol Biochem Pharm 1999;138:57–96.CrossRefGoogle Scholar
  12. Hu DH, Matsuno A, Terakado K, Matsuura T, Kimura S, Maruyama K. Projectin is an invertebrate connectin (titin): isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J Muscle Res Cell Motil 1990;11:497–511.PubMedCrossRefGoogle Scholar
  13. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995a;270:293–296.PubMedCrossRefGoogle Scholar
  14. Labeit S, Kolmerer B. The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 1995b;248:308–315.PubMedGoogle Scholar
  15. Lackey A, Ferguson C, Labeit S, Reedy M, Larkins A, Butcher G, Leonard K, Bullard B. Identification of high molecular weight proteins in insect flight and leg muscle. EMBO J 1990;9:3459–3467.Google Scholar
  16. Lackey A, Labeit S, Gantel M, Fergusson J, Barlow DP, Leonard K, Bullard B. Kettin, a large molecular protein in the Z-disc of insect muscles. EMBO J 1993;12:2863–2871.Google Scholar
  17. Linke W, Ivemeyer M, Olivieri M, Kolmerer B, Rüegg J, Labeit S. Towards a molecular understanding of the elasticity of titin. J Molec Biol 1996;261:62–71.PubMedCrossRefGoogle Scholar
  18. Linke WA, Stockmeier MR, Ivemayer M, Hosser H, Mundel P. Characterizing titin’s I-b and Ig domain region as an entropic spring. J Cell Sci 1988a;111:1567–1574.Google Scholar
  19. Linke WA, Ivemayer M, Mündel P, Stockmaier MR, Kolemer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 1988b;95:8052–8057.CrossRefGoogle Scholar
  20. Linke W, Rudy D, Centner T, Gautel M, Witt C, Labeit S, Gregorio C. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;156:631–644.CrossRefGoogle Scholar
  21. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–333.PubMedCrossRefGoogle Scholar
  22. Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuch Masako. Molecular size and shape of B-connectin, an elastic protein of striated muscle. Biochem 1984;95:1423–1433.Google Scholar
  23. Nave R, Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci 1990;85:535–544.Google Scholar
  24. Politou AS, Gautel M, Improta S, Vangelista L, Panstore A. The elastic I-band region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domains. J Mol Biol 1996;255:604–616.PubMedCrossRefGoogle Scholar
  25. Politou AS, Thomas DJ, Pastore A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 1995;69:2601–2610.PubMedCrossRefGoogle Scholar
  26. Pringle JW. The Contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol 1967;17:1–60.PubMedCrossRefGoogle Scholar
  27. Reedy MK. “Electron Microscope Observations Concerning the Behavior of the Cross-Bridge in Striated Muscle.” In Contractility of Muscle Cells and Related Processes, RJ Podolsky, ed. Englewood Cliffs, NJ: Prentice-Hall, 1971.Google Scholar
  28. Saide JD. Identification of a connecting filament protein in insect fibrillar flight muscle. J Molec Biol 1981;153:661–679.PubMedCrossRefGoogle Scholar
  29. Saide JD, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L, Vigoreaux SO, Valgeirsdottir K, Pardue ML. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophilamelanogaster. J Cell Biol 1989;109:2157–2167.PubMedCrossRefGoogle Scholar
  30. Saide JD, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L. Z-band proteins in the flight muscle and leg muscle of the honeybee. J Muscle Res Cell Motil 1990;11:125–136.PubMedCrossRefGoogle Scholar
  31. Soteriou A, Clarke A, Martin S, Trinick J. Titin folding energy and elasticity. Proc R Soc Lond B Biol Sci 1993;254:83–86.CrossRefGoogle Scholar
  32. Trinick J, Knight P, Whiting A. Purification and properties of native titin. J Mol Biol 1984;180:331–356.PubMedCrossRefGoogle Scholar
  33. Trombitás K, Tigyi-Sebes A. Fine structure and mechanical properties of insect muscle. In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  34. Trombitás K, Tigyi-Sebes A. Cross-bridge interaction with oppositely polarized actin filaments in double-overlap zones of insect flight muscle. Nature 1984;309:168–170.PubMedCrossRefGoogle Scholar
  35. Trombitás K, Tigyi-Sebes A. How actin filament polarity affects crossbridge force in doubly-overlapped insect muscle. J Muscle Res Cell Motil 1985;126:2285–2288.Google Scholar
  36. Trombitás K, Pollack GH, Wright J, Wang K. Elastic behavior and arrangement of titin filaments in the I-band. Proc Xllth Intl Congress for EM 1990;478–479.Google Scholar
  37. Trombitás K, Pollack GH, Wright F, Wang K. Elastic properties of titin filaments demonstrated using a freeze-fracture technique. Cell Motil Cytoskel 1993a;24:274–283CrossRefGoogle Scholar
  38. Trombitás K, Jin JP, Granzier H. The mechanically active domain of titin in cardiac muscle. Circ Res 1995;77:856–861.PubMedCrossRefGoogle Scholar
  39. Trombitás K, Greaser ML, Pollack GH. Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 1997;18:345–351.PubMedCrossRefGoogle Scholar
  40. Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998a;140:853–859.PubMedCrossRefGoogle Scholar
  41. Trombitás K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 1998b;122:188–196.PubMedCrossRefGoogle Scholar
  42. Trombitás K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissection of N2B cardiac titin’s extensibility. Biophys J 1999;77:3186–3196.CrossRefGoogle Scholar
  43. Vigoreaux JO, Saide J, Pardue ML. Structurally different Drosophilastriated muscles utilize distinct variants of Z-band associated proteins. J Muscle Res CellMotil 1991;12:340–354.CrossRefGoogle Scholar
  44. Wang K. “Cytoskeletal matrix in striated muscle: The role of titin, nebulin and intermediate filaments.” In Contractile Mechanisms in Muscle, GH Pollack, H Sugi, eds. New York, NY: Plenum Press, 1984.Google Scholar
  45. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 1991;88:7101–7105.PubMedCrossRefGoogle Scholar
  46. White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983;343:31–57.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Károly Trombitás
    • 1
  • Alexandra Freiburg
    • 2
  • Marion Greaser
    • 3
  • Siegfried Labeit
    • 2
  • Henk Granzier
    • 1
  1. 1.Department of Veterinary and Comparative Anatomy, Pharmacology, and PhysiologyWashington State UniversityPullmanUSA
  2. 2.European Molecular Biology LaboratoryHeidelbergGermany
  3. 3.Muscle Biology LaboratoryUniversity of WisconsinMadisonUSA

Personalised recommendations