Advertisement

Role of Titin in Nonmuscle and Smooth Muscle Cells

  • Thomas C. S. KellerIII
  • Kenneth Eilertsen
  • Mark Higginbotham
  • Steven Kazmierski
  • Kyoung-Tae Kim
  • Michaella Velichkova
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

Extensive investigation of vertebrate striated muscle titin has yielded significant insight into its structure and function in striated muscle. We have begun to investigate other members of the titin protein family found in vertebrate smooth muscle and nonmuscle cells. Smooth and nonmuscle titins resemble striated muscle titin in molecular size and morphology but differ in their interactions with myosin II filaments and in the structural contexts in which they exist in vivo. Divergence of these titins from the muscle titin paradigm demonstrates the versatility of this remarkable family of giant proteins.

Keywords

Actin Filament Stress Fiber Brush Border Thick Filament Myosin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broschat KO, Stidwell RP, Burgess DR. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell 1983;35:561–71.PubMedCrossRefGoogle Scholar
  2. Drenkhahn D, Dermeitzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol 1988;107:1037–48.CrossRefGoogle Scholar
  3. Eilertsen KJ, Kazmierski ST, Keller TCS, III. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 1994;126:1201–10.PubMedCrossRefGoogle Scholar
  4. Eilertsen KJ, Kazmierski ST, Keller TCS, III. Interaction of α-actinin with cellular titin. Eur J Cell Biol 1997;74:361–64.PubMedGoogle Scholar
  5. Eilertsen KJ, Keller TCS, III. Identification and characterization of two huge protein components of the brush border cytoskeleton: Evidence for a cellular isoform of titin. J Cell Biol 1992;119:549–57.PubMedCrossRefGoogle Scholar
  6. Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle Assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.PubMedCrossRefGoogle Scholar
  7. Hirokawa N, Keller TCS, Chasan R, Mooseker MS. Mechanisms of Brush Border Contractility Studied by the Quick-freeze, Deep-etch Method. J Cell Biol 1983;96:1325–36.PubMedCrossRefGoogle Scholar
  8. Hirokawa N, Tilney LG, Fujiwara K, Heuser JE. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol 1982;94:425–43.PubMedCrossRefGoogle Scholar
  9. Keller TCS, Conzelman KA, Chasan R, Mooseker MS. The role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol 1985;100:1647–55.PubMedCrossRefGoogle Scholar
  10. Keller TCS, Mooseker MS. “Enterocyte cytoskeleton: its structure and function.” In Handbook of Physiology. Section 6: The gastrointestinal system 4th ed, M Field, RA Frizzell, eds. Bethesda, MD: American Physiological Society, 1991.Google Scholar
  11. Keller TCS, III. Structure and function of titin and nebulin. Curr Opin Cell Biol 1995;7:32–38.PubMedCrossRefGoogle Scholar
  12. Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J 1992;11:1711–16.PubMedGoogle Scholar
  13. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–45.PubMedGoogle Scholar
  14. Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S, Eguchi G. Connectin, an elastic protein of muscle: characterization and function. J Biochem(Tokyo) 1977;82:317–37.Google Scholar
  15. Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Fürst DO, Wilmanns M, Gautel M. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 1998;395:863–69.PubMedCrossRefGoogle Scholar
  16. Pavalko FM, Burridge K. Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of a-actinin. J Cell Biol 1991;114:481–91.PubMedCrossRefGoogle Scholar
  17. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, Labeit D, Linke WA, Suzuki K, Labeit S. Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol 1997;270:688–95.PubMedCrossRefGoogle Scholar
  18. Trombitás K, Pollack GH. Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 1993;14:416–22.PubMedCrossRefGoogle Scholar
  19. Verkhovsky AB, Svitkina TM, Borisy GG. Myosin II filaments assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J Cell Biol 1995;131:989–1002.PubMedCrossRefGoogle Scholar
  20. Wang K, McClure J, Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–702.PubMedCrossRefGoogle Scholar
  21. Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205:263–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Thomas C. S. KellerIII
    • 1
    • 2
  • Kenneth Eilertsen
    • 2
  • Mark Higginbotham
    • 1
  • Steven Kazmierski
    • 1
  • Kyoung-Tae Kim
    • 1
  • Michaella Velichkova
    • 2
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Program of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations