Skip to main content

Role of the Elastic Protein Projectin in Stretch Activation and Work Output of Drosophila Flight Muscles

  • Chapter
Elastic Filaments of the Cell

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 481))

Abstract

We examine how the stretch activation response of the Drosophila indirect flight muscles (IFM) is affected by the projectin mutation bent Dominant. IFM from flies heterozygous for this mutation (bent D / +) produce ~85% full length projectin and ~15% truncated projectin lacking the kinase domain and more C-terminal sequences. Passive stiffness and power output of mutant fibers is similar to that of wild-type (+/+) fibers, but the amplitude of the stretch activation response (delayed tension rise) was significantly reduced. Measurement of actomyosin kinetics by sinusoidal analysis revealed that the apparent rate constant of the delayed tension rise (2πb) increased in proportion to the decrease in amplitude, accounting for the near wild-type levels of power output and nearly normal flight ability. These results suggest that projectin plays a crucial role in stretch activation, possibly through its protein kinase activity, by modulating crossbridge recruitment and kinetics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayme-Southgate A, Southgate R, Saide J, Benian GM, Pardue ML. Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domain. J Cell Biol 1995;128:393–403.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MH, Hyatt CJ, Lehmann F-O, Moore JR, Reedy MC, Simcox A, Tohtong R, Vigoreaux JO, Yamashita H, Maughan DW. Phosphorylation-dependent power output of transgenic flies: an integrated study. Biophys J 1997,73:3122–3134.

    Article  PubMed  CAS  Google Scholar 

  • Domingo A, Gonzalez-Jurado J, Maroto M, Diaz C, Vinos J, Carrasco C, Cervera M, Marco R. Troponin-T is a calcium-binding protein in insect muscle: in vivo phosphorylation, muscle-specific isoforms and developmental profile in Drosophila melanogaster. J Muscle Res Cell Motil 1998;19:393–403.

    Article  PubMed  CAS  Google Scholar 

  • Granzier HLM, Wang K. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. J Gen Physiol 1993;101:235–270.

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Probst WC, Kohanski RA, Buku A, Weiss KR. Phosphorylation of myosin regulatory light chains by the molluscan twitchin kinase. Eur J Biochem 1995;233:426–431.

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Probst WC, Vilim FS, Buku A, Weiss KR. Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 1994;269:21086–21093.

    PubMed  CAS  Google Scholar 

  • Huxley A. Muscular contraction. J Physiol (Lond) 1974;243:1–43.

    CAS  Google Scholar 

  • Kawai M, Brandt PW. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil1980;1:279–303.

    Article  PubMed  CAS  Google Scholar 

  • Maroto M, Vinos J, Marco R, Cervera M. Autophosphorylating protein kinase activity in titin-like arthropod projectin. J Mol Biol 1992;224:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Nave R, Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Science 1990;95:535–544.

    PubMed  CAS  Google Scholar 

  • Pringle JWS. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B 1978;201:107–130.

    Article  PubMed  CAS  Google Scholar 

  • Reedy MC, Beall C. Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Develop Biol 1993;160:443–465.

    Article  PubMed  CAS  Google Scholar 

  • Saide JD. Identification of a connecting filament protein in insect fibrillar flight muscle. J Mol Biol 1981;153:661–679.

    Article  PubMed  CAS  Google Scholar 

  • Saide JD, Chin-Bow S, Hogan-Sheldon J, Busquets-Turner L, Vigoreaux JO, Valgeirsdottir K, Pardue ML. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J Cell Biol 1989;109:2157–2167.

    Article  PubMed  CAS  Google Scholar 

  • Steiger GJ. Stretch activation and tension transients in cardiac, skeletal and insect flight muscle. In Insect flight muscle, RT Tregear, ed. North Holland: Amsterdam, 1977;221–268.

    Google Scholar 

  • Tawada K, Kawai M. Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power. Biophys J 1990;57:643–647.

    Article  PubMed  CAS  Google Scholar 

  • Thorson J, White DCS. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Biophys J 1969;9:360–390.

    Article  PubMed  CAS  Google Scholar 

  • Thorson J, White DCS. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit skeletal muscle. J Physiol (Great Britain)1983;343:59–84.

    CAS  Google Scholar 

  • Tohtong R, Yamashita H, Graham M, Haeberle J, Simcox A, Maughan D. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 1995;374:650–655.

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT, Edwards RJ, Irving TC, Poole KJ, Reedy MC, Schmitz H, Towns-Andrews E, Reedy MK. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J 1998;74:1439–1451.

    Article  PubMed  CAS  Google Scholar 

  • Vemuri R, Lankford EB, Poetter K, Hassanzadeh S, Takeda K, Yu ZX; Ferrans VJ, Epstein ND. The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci U S A 1999;96:1048–1053.

    Article  PubMed  CAS  Google Scholar 

  • Vigoreaux JO, Hernandez C, Moore J, Ayer G, Maughan D. A genetic deficiency that spans the flightin gene of Drosophila melanogaster affects the ultrastructure and function of the flight muscles. J Exp Biol 1998;201:2033–2044.

    PubMed  CAS  Google Scholar 

  • Vigoreaux JO, Perry ML. Multiple isoelectric variants of flightin in Drosophila stretch-activated muscles are generated by temporally regulated phosphorylations. J Muscle Res Cell Motil 1994;15:607–616.

    Article  PubMed  CAS  Google Scholar 

  • Vigoreaux JO, Saide JD, Pardue ML. Structurally different Drosophila striated muscles utilize distinct variants of Z band-associated proteins. J Muscle Res Cell Motil 1991;12:340–354.

    Article  PubMed  CAS  Google Scholar 

  • Weitkamp B, Jurk K, Beinbrech G. Projectin-thin filament interactions and modulation of the sensitivity of the actomyosin ATPase to calcium by projectin kinase. J Biol Chem 1998;273:19802–19808.

    Article  PubMed  CAS  Google Scholar 

  • White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol(Great Britain)1983;343:31–57.

    CAS  Google Scholar 

  • Wray JS. Filament geometry and the activation of insect flight muscles. Nature 1979;280:325–326.

    Article  Google Scholar 

  • Zhao Y, Kawai M. The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. Biophys J 1993;64:197–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vigoreaux, J.O., Moore, J.R., Maughan, D.W. (2000). Role of the Elastic Protein Projectin in Stretch Activation and Work Output of Drosophila Flight Muscles. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4267-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6916-5

  • Online ISBN: 978-1-4615-4267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics