Titin as a Chromosomal Protein

  • Cristina Machado
  • Deborah J. Andrew
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)


We identified titin as a chromosomal protein using a human autoimmune scleroderma serum. We cloned the corresponding gene in the fruitfly, Droso-phila melanogaster. We have demonstrated that titin is not only expressed and localized in striated muscle but is also distributed uniformly on condensed mitotic chromosomes using multiple antibodies directed against different domains of both Drosophila and vertebrate titin. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle. Titin may also function as a molecular scaffold during myofibril assembly. We hypothesize that titin is a component of chromosomes that may function to determine chromosome structure and provide elasticity, playing a role similar to that proposed for titin in muscle. We have identified mutations in Drosophila Titin (D-Titin) and are characterizing phenotypes in muscle and chromosomes.


Mitotic Chromosome Chromosome Condensation Chromosomal Protein Limb Girdle Muscular Dystrophy Familial Hypertrophic Cardiomyopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bejarano LA, Valdivia MM. Molecular cloning of an intron-less gene for the hamster centromere antigen CENP-B. Biochimica et Biophysica Acta 1996;1307:21–25.CrossRefPubMedGoogle Scholar
  2. Colley NJ, Tokuyasu KT, Singer SJ. The early expression of myofibrillar proteins in round post mitotic myoblasts of embryonic skeletal muscle. J Cell Sci 1990;95:11–22.PubMedGoogle Scholar
  3. Earnshaw WC, Mackay AM. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J 1994;8:947–956.PubMedGoogle Scholar
  4. Earnshaw WC, Rattner JB. The use of autoantibodies in the study of nuclear and chromosomal organization. Methods in Cell Biology 1991;35:135–175.CrossRefPubMedGoogle Scholar
  5. Earnshaw WC, Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 1985;91:313–321.CrossRefPubMedGoogle Scholar
  6. Eilertsen KJ, Kazmierski ST, Keller TC III. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 1994;126:1201–1210.CrossRefPubMedGoogle Scholar
  7. Eppenberger HM, Perriard JC, Rosenberg UB and Strehler EE. The Mr 165,000 M-protein myomesin: a specific protein of cross-striated muscle cells. J Cell Biol 1981;89:185–193.CrossRefPubMedGoogle Scholar
  8. Freiburg A, Gautel M. A molecular map of the interaction between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 1996;235:317–323.CrossRefPubMedGoogle Scholar
  9. Fritzler MJ. Autoantibodies: diagnostic fingerprints and etiological perplexities. Clin Invest Med 1997;20:103–115.Google Scholar
  10. Fulton AB, Alftine C. Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc Funct 1997;22:51–58.CrossRefGoogle Scholar
  11. Fürst DO, Nave R, Osborn M, Weber K. Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils. J Cell Sci 1989;94:119–125.PubMedGoogle Scholar
  12. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 1996;385:11–14.CrossRefPubMedGoogle Scholar
  13. Gregorio CC, Granzier H, Sorimachi H and Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.CrossRefPubMedGoogle Scholar
  14. Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997;91:59–70.CrossRefGoogle Scholar
  15. Heck MMS. Condensins, cohesins and chromosome architecture: How to make and break a mitotic chromosome. Cell 1997;91:5–8.CrossRefPubMedGoogle Scholar
  16. Hirano T, Kobayashi R, Hirano M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 1997;89:511–521.CrossRefPubMedGoogle Scholar
  17. Hirano T, Mitchison TJ. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 1994;79:449–458.CrossRefPubMedGoogle Scholar
  18. Hirano T, Mitchison TJ, Swedlow JR. The SMC family: from chromosome condensation to dosage compensation. Curr Opin Cell Biol 1995;7:329–336.CrossRefPubMedGoogle Scholar
  19. Houchmandzadeh B, Dimitrov S. Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 1999;145:215–223.CrossRefPubMedGoogle Scholar
  20. Houchmandzadeh B, Marko JF, Chatenay D, Libchaber A. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol 1997;139:1–12.CrossRefPubMedGoogle Scholar
  21. Houmeida A, Holt J, Tskhovrebova L, Trinick J. Studies of the interaction between titin and myosin. J Cell 1995;131:1471–1481.CrossRefGoogle Scholar
  22. Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 1988;104:504–508.PubMedGoogle Scholar
  23. Keller TCS. Structure and function of titin and nebulin. Curr Opin Cell Biol 1995;7:32–3.CrossRefPubMedGoogle Scholar
  24. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1112–1116.CrossRefPubMedGoogle Scholar
  25. Kimura K, Hirano T. ATP-dependent positive supercoiling of DNA by 13S condensin: A biochemical implication for chromosome condensation. Cell 1997;90:625–634.CrossRefPubMedGoogle Scholar
  26. Kinbara K, Sorimachi H, Ishiura S, Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 1997;342:99–107.CrossRefPubMedGoogle Scholar
  27. Kolmerer B, Olivieri N, Witt C, Herrmann BG, Labeit S. Genomic organization of the M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 1996;256:556–563.CrossRefPubMedGoogle Scholar
  28. Koshland D, Strunnikov A. Mitotic chromosome condensation. Ann Rev Cell Dev Biol 1996;12:305–333.CrossRefGoogle Scholar
  29. Labeit S, Barlow DP, Gautel M, Gibson T, Gibson M, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A, Trinick J. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 1990;345:273–276.CrossRefPubMedGoogle Scholar
  30. Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J1992;11:1711–1716.PubMedGoogle Scholar
  31. Labeit S, Kolmerer B. Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.CrossRefPubMedGoogle Scholar
  32. Labeit S, Kolmerer B, Linke WA. The giant protein titin. Circul Res 1977;80:290–294.CrossRefGoogle Scholar
  33. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, R’egg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.CrossRefPubMedGoogle Scholar
  34. Machado C. Isolating the D-Titin gene in Drosophila melanogasterusing a human autoimmune serum. PhD. Thesis, University of Porto, 1998.Google Scholar
  35. Machado C, Sunkel CE, Andrew DJ. From muscles to chromosomes: human antibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–323.CrossRefPubMedGoogle Scholar
  36. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–345.PubMedGoogle Scholar
  37. Maruyama K, Endo T, Kume H Kawamura Y, Kanzawa N, Nakavchi Y, Kimura S, Kawashima S. A novel domain sequence of connectin localized at the I-band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Commun 1993;194:1288–1291.CrossRefPubMedGoogle Scholar
  38. Michaelis C, Ciosk R, Nasmyth K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997;91:47–58.CrossRefGoogle Scholar
  39. Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR. Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc NatlAcadSci USA 1990;17:1627–1631.Google Scholar
  40. Obermann WM, Gautel M, Steiner F, van der Ven PF, Weber K, Fürst DO. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250 kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol 1996;134:1441–1453.CrossRefPubMedGoogle Scholar
  41. Obermann WM, Gautel M, Weber K, Fürst DO. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 1997;16:211–220.CrossRefPubMedGoogle Scholar
  42. Ohtsuka H, Yajima H, Maruyama K, Kimura S. Binding of the N-terminal 63 kDa portion of connectin/titin to α-actinin as revealed by the yeast two-hybrid system. FEBS Lett 1997a;401:65–67.CrossRefPubMedGoogle Scholar
  43. Ohtsuka H, Yajima H, Maruyama K, Kimura S. The N-terminal Z repeat 5 of connectin/titin binds to the C-terminal region of a-actinin. Biochem Biophys Res Commun 1997b;235:1–3.CrossRefPubMedGoogle Scholar
  44. Paulson JR, Laemmli UK. The structure of histone-depleted chromosomes. Cell 1977;12:817–828.CrossRefPubMedGoogle Scholar
  45. Peterson CL. The SMC family: novel motor proteins for chromosome condensation? Cell 1994;79:389–392.CrossRefPubMedGoogle Scholar
  46. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997,276:1109–1112.CrossRefPubMedGoogle Scholar
  47. Saitoh N, Goldberg I, Earnshaw WC. The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 1995;17:759–766.CrossRefPubMedGoogle Scholar
  48. Saitoh N, Goldberg IG, Wood ER, Earnshaw WC. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with unusual predicted tertiary structure. J Cell Biol 1994;127:303–318.CrossRefPubMedGoogle Scholar
  49. Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M. Fission yeast cut3 and cut 14, members of the ubiquitous protein family are required for chromosome condensation and segregation in mitosis. EMBO J 1994;13:4938–4952.PubMedGoogle Scholar
  50. Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC. Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 1993;104:573–582.PubMedGoogle Scholar
  51. Sebastyén MG, Wolff JA, Greaser ML. Characterization of a 5.4 kb cDNA fragment from the Z-line of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 1995;108:3029–3037.Google Scholar
  52. Shibata S, Muryos T, Saitoh Y, Brumeanu TD, Bona CA, Kasturi KN. Immunochemical and molecular characterization of anti-RNA polymerase I autoantibodies produced by tight skin mouse. J Clin Invest 1993;92:984–992.CrossRefPubMedGoogle Scholar
  53. Sliter TJ, Henrich VC, Tucker RL, Gilbert LI. The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster: Analysis of recessive lethal mutations. Genetics 1989;123:327–336.PubMedGoogle Scholar
  54. Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio C, Labeit D, Linke WA, Suzuki K, Labeit S. Tissue-specific expression and a-actinin binding properties of the Z-disc titin. Implications for the nature of vertebrate Z-discs. J Mol Biol 1997;271:1–8.CrossRefGoogle Scholar
  55. Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Mol Biochem 1995;270:31158–31162.Google Scholar
  56. Soteriou A, Gamage M, Trinick J. A survey of the interactions made by the giant protein titin. J Cell sci 1993;104:119–123.PubMedGoogle Scholar
  57. Spain TA, Sun R, Gradzka M, Lin SF, Craft J, Miller G. The transcriptional activator Sp1, a novel autoantigen. Arthritis and Rheumatism 1997;40:1085–1095.CrossRefPubMedGoogle Scholar
  58. Strunnikov AV, Hogan E, Koshland D. SMC-2, a Saccaromyces cerevisiae gene essential for chromosome segregation and condensation defines a subgroup within the SMC-family. Genes and Dev 1995;9:587–599.CrossRefPubMedGoogle Scholar
  59. Strunnikov AV, Larionov VL, Koshland D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol 1993;123:1635–1648.CrossRefPubMedGoogle Scholar
  60. Sugiura K, Muro Y, Nagai Y, Kamimoto T, Wakabayashi T, Ohashi M, Hagiwara M. Expression cloning and intracelular localization of a human ZF5 homologue. Biochimica et Biophysica Acta 1997;1352:23–26.CrossRefPubMedGoogle Scholar
  61. Takano-Ohmuro H, Nakauchi Y, Kimura S, Maruyama K. Autophosphorylation of β-connectin (titin 2) in vitro. Biochem Biophys Res Commun 1992;183:31–35.CrossRefPubMedGoogle Scholar
  62. Tan EM. Autoantibodies to nuclear antigens (ANA): Their immunobiology and medicine. Advances Immunol 1982;33:167–240.CrossRefGoogle Scholar
  63. Tan EM. Antinuclear antibodies: diagnostic markers for autoimmmune diseases and probes for cell biology. Advances Immunol 1989;44:93–151.CrossRefGoogle Scholar
  64. Tan EM. Autoantibodies in pathology and cell biology. Cell 1991;67:841–842.CrossRefPubMedGoogle Scholar
  65. Tan EM, Reimer G, Sullivan K. Iniracellular autoantigens: diagnostic fingerprints but aetiological dilemmas.Chichester, John Wiley & Sons, 1987.Google Scholar
  66. Trinick J. Titin and nebulin: protein rulers in muscle? TIBS 1994;19:405–408.PubMedGoogle Scholar
  67. Trinick J. Titin as a scaffold and spring. Cytoskeleton Curr Biol 1996;6:258–260.CrossRefGoogle Scholar
  68. Trombitas K, Greaser ML, Pollack GH. Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 1997;18:345–351.CrossRefPubMedGoogle Scholar
  69. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997;387:308–312.CrossRefPubMedGoogle Scholar
  70. Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol Biol Cell 1997;8:705–717.PubMedGoogle Scholar
  71. van der Ven PF, Fürst DO. Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro. Cell Struct Funct 1997;22:163–171.CrossRefPubMedGoogle Scholar
  72. Wang K, Fänger BO, Guyer CA, Staros JV Electrophoretic transfer of high-molecular weight proteins for immunostaining. Meth Enzymology 1989;172:687–696.CrossRefGoogle Scholar
  73. Wang K, McClure J, Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.CrossRefPubMedGoogle Scholar
  74. Wang M, Champion LE, Biessmann H, Mason JM. Mapping a mutator, mu2, which increases the frequency of terminal deletions in Drosophila melanogaster. Mol Gen Genet 1994;245:598–607.PubMedGoogle Scholar
  75. Warburton PE, Earnshaw WC. Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. Bioessays 1997;19:97–99.CrossRefPubMedGoogle Scholar
  76. Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phorphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 1999;97:99–109.CrossRefPubMedGoogle Scholar
  77. Wolffe AP. Chromatin: structure and function. San Diego, CA: Academic Press, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Cristina Machado
    • 1
  • Deborah J. Andrew
    • 1
  1. 1.Department of Cell Biology and AnatomyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations