Skip to main content

Titin as a Chromosomal Protein

  • Chapter
Book cover Elastic Filaments of the Cell

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 481))

Abstract

We identified titin as a chromosomal protein using a human autoimmune scleroderma serum. We cloned the corresponding gene in the fruitfly, Droso-phila melanogaster. We have demonstrated that titin is not only expressed and localized in striated muscle but is also distributed uniformly on condensed mitotic chromosomes using multiple antibodies directed against different domains of both Drosophila and vertebrate titin. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle. Titin may also function as a molecular scaffold during myofibril assembly. We hypothesize that titin is a component of chromosomes that may function to determine chromosome structure and provide elasticity, playing a role similar to that proposed for titin in muscle. We have identified mutations in Drosophila Titin (D-Titin) and are characterizing phenotypes in muscle and chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bejarano LA, Valdivia MM. Molecular cloning of an intron-less gene for the hamster centromere antigen CENP-B. Biochimica et Biophysica Acta 1996;1307:21–25.

    Article  PubMed  Google Scholar 

  • Colley NJ, Tokuyasu KT, Singer SJ. The early expression of myofibrillar proteins in round post mitotic myoblasts of embryonic skeletal muscle. J Cell Sci 1990;95:11–22.

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Mackay AM. Role of nonhistone proteins in the chromosomal events of mitosis. FASEB J 1994;8:947–956.

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Rattner JB. The use of autoantibodies in the study of nuclear and chromosomal organization. Methods in Cell Biology 1991;35:135–175.

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 1985;91:313–321.

    Article  CAS  PubMed  Google Scholar 

  • Eilertsen KJ, Kazmierski ST, Keller TC III. Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro. J Cell Biol 1994;126:1201–1210.

    Article  CAS  PubMed  Google Scholar 

  • Eppenberger HM, Perriard JC, Rosenberg UB and Strehler EE. The Mr 165,000 M-protein myomesin: a specific protein of cross-striated muscle cells. J Cell Biol 1981;89:185–193.

    Article  CAS  PubMed  Google Scholar 

  • Freiburg A, Gautel M. A molecular map of the interaction between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 1996;235:317–323.

    Article  CAS  PubMed  Google Scholar 

  • Fritzler MJ. Autoantibodies: diagnostic fingerprints and etiological perplexities. Clin Invest Med 1997;20:103–115.

    Google Scholar 

  • Fulton AB, Alftine C. Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struc Funct 1997;22:51–58.

    Article  CAS  Google Scholar 

  • Fürst DO, Nave R, Osborn M, Weber K. Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils. J Cell Sci 1989;94:119–125.

    PubMed  Google Scholar 

  • Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 1996;385:11–14.

    Article  CAS  PubMed  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H and Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.

    Article  CAS  PubMed  Google Scholar 

  • Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997;91:59–70.

    Article  Google Scholar 

  • Heck MMS. Condensins, cohesins and chromosome architecture: How to make and break a mitotic chromosome. Cell 1997;91:5–8.

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 1997;89:511–521.

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Mitchison TJ. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 1994;79:449–458.

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Mitchison TJ, Swedlow JR. The SMC family: from chromosome condensation to dosage compensation. Curr Opin Cell Biol 1995;7:329–336.

    Article  CAS  PubMed  Google Scholar 

  • Houchmandzadeh B, Dimitrov S. Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 1999;145:215–223.

    Article  CAS  PubMed  Google Scholar 

  • Houchmandzadeh B, Marko JF, Chatenay D, Libchaber A. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol 1997;139:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Houmeida A, Holt J, Tskhovrebova L, Trinick J. Studies of the interaction between titin and myosin. J Cell 1995;131:1471–1481.

    Article  CAS  Google Scholar 

  • Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 1988;104:504–508.

    CAS  PubMed  Google Scholar 

  • Keller TCS. Structure and function of titin and nebulin. Curr Opin Cell Biol 1995;7:32–3.

    Article  CAS  PubMed  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1112–1116.

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Hirano T. ATP-dependent positive supercoiling of DNA by 13S condensin: A biochemical implication for chromosome condensation. Cell 1997;90:625–634.

    Article  CAS  PubMed  Google Scholar 

  • Kinbara K, Sorimachi H, Ishiura S, Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 1997;342:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Kolmerer B, Olivieri N, Witt C, Herrmann BG, Labeit S. Genomic organization of the M-line titin and its tissue-specific expression in two distinct isoforms. J Mol Biol 1996;256:556–563.

    Article  CAS  PubMed  Google Scholar 

  • Koshland D, Strunnikov A. Mitotic chromosome condensation. Ann Rev Cell Dev Biol 1996;12:305–333.

    Article  CAS  Google Scholar 

  • Labeit S, Barlow DP, Gautel M, Gibson T, Gibson M, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A, Trinick J. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 1990;345:273–276.

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J1992;11:1711–1716.

    CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B. Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B, Linke WA. The giant protein titin. Circul Res 1977;80:290–294.

    Article  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, R’egg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.

    Article  CAS  PubMed  Google Scholar 

  • Machado C. Isolating the D-Titin gene in Drosophila melanogasterusing a human autoimmune serum. PhD. Thesis, University of Porto, 1998.

    Google Scholar 

  • Machado C, Sunkel CE, Andrew DJ. From muscles to chromosomes: human antibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–323.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–345.

    CAS  PubMed  Google Scholar 

  • Maruyama K, Endo T, Kume H Kawamura Y, Kanzawa N, Nakavchi Y, Kimura S, Kawashima S. A novel domain sequence of connectin localized at the I-band of skeletal muscle sarcomeres: homology to neurofilament subunits. Biochem Biophys Res Commun 1993;194:1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Michaelis C, Ciosk R, Nasmyth K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997;91:47–58.

    Article  Google Scholar 

  • Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR. Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc NatlAcadSci USA 1990;17:1627–1631.

    Google Scholar 

  • Obermann WM, Gautel M, Steiner F, van der Ven PF, Weber K, Fürst DO. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250 kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol 1996;134:1441–1453.

    Article  CAS  PubMed  Google Scholar 

  • Obermann WM, Gautel M, Weber K, Fürst DO. Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 1997;16:211–220.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Yajima H, Maruyama K, Kimura S. Binding of the N-terminal 63 kDa portion of connectin/titin to α-actinin as revealed by the yeast two-hybrid system. FEBS Lett 1997a;401:65–67.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Yajima H, Maruyama K, Kimura S. The N-terminal Z repeat 5 of connectin/titin binds to the C-terminal region of a-actinin. Biochem Biophys Res Commun 1997b;235:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Paulson JR, Laemmli UK. The structure of histone-depleted chromosomes. Cell 1977;12:817–828.

    Article  CAS  PubMed  Google Scholar 

  • Peterson CL. The SMC family: novel motor proteins for chromosome condensation? Cell 1994;79:389–392.

    Article  CAS  PubMed  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997,276:1109–1112.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh N, Goldberg I, Earnshaw WC. The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 1995;17:759–766.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh N, Goldberg IG, Wood ER, Earnshaw WC. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with unusual predicted tertiary structure. J Cell Biol 1994;127:303–318.

    Article  CAS  PubMed  Google Scholar 

  • Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M. Fission yeast cut3 and cut 14, members of the ubiquitous protein family are required for chromosome condensation and segregation in mitosis. EMBO J 1994;13:4938–4952.

    CAS  PubMed  Google Scholar 

  • Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC. Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 1993;104:573–582.

    PubMed  Google Scholar 

  • Sebastyén MG, Wolff JA, Greaser ML. Characterization of a 5.4 kb cDNA fragment from the Z-line of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 1995;108:3029–3037.

    Google Scholar 

  • Shibata S, Muryos T, Saitoh Y, Brumeanu TD, Bona CA, Kasturi KN. Immunochemical and molecular characterization of anti-RNA polymerase I autoantibodies produced by tight skin mouse. J Clin Invest 1993;92:984–992.

    Article  CAS  PubMed  Google Scholar 

  • Sliter TJ, Henrich VC, Tucker RL, Gilbert LI. The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster: Analysis of recessive lethal mutations. Genetics 1989;123:327–336.

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio C, Labeit D, Linke WA, Suzuki K, Labeit S. Tissue-specific expression and a-actinin binding properties of the Z-disc titin. Implications for the nature of vertebrate Z-discs. J Mol Biol 1997;271:1–8.

    Article  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Mol Biochem 1995;270:31158–31162.

    CAS  Google Scholar 

  • Soteriou A, Gamage M, Trinick J. A survey of the interactions made by the giant protein titin. J Cell sci 1993;104:119–123.

    CAS  PubMed  Google Scholar 

  • Spain TA, Sun R, Gradzka M, Lin SF, Craft J, Miller G. The transcriptional activator Sp1, a novel autoantigen. Arthritis and Rheumatism 1997;40:1085–1095.

    Article  CAS  PubMed  Google Scholar 

  • Strunnikov AV, Hogan E, Koshland D. SMC-2, a Saccaromyces cerevisiae gene essential for chromosome segregation and condensation defines a subgroup within the SMC-family. Genes and Dev 1995;9:587–599.

    Article  CAS  PubMed  Google Scholar 

  • Strunnikov AV, Larionov VL, Koshland D. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol 1993;123:1635–1648.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura K, Muro Y, Nagai Y, Kamimoto T, Wakabayashi T, Ohashi M, Hagiwara M. Expression cloning and intracelular localization of a human ZF5 homologue. Biochimica et Biophysica Acta 1997;1352:23–26.

    Article  CAS  PubMed  Google Scholar 

  • Takano-Ohmuro H, Nakauchi Y, Kimura S, Maruyama K. Autophosphorylation of β-connectin (titin 2) in vitro. Biochem Biophys Res Commun 1992;183:31–35.

    Article  CAS  PubMed  Google Scholar 

  • Tan EM. Autoantibodies to nuclear antigens (ANA): Their immunobiology and medicine. Advances Immunol 1982;33:167–240.

    Article  CAS  Google Scholar 

  • Tan EM. Antinuclear antibodies: diagnostic markers for autoimmmune diseases and probes for cell biology. Advances Immunol 1989;44:93–151.

    Article  CAS  Google Scholar 

  • Tan EM. Autoantibodies in pathology and cell biology. Cell 1991;67:841–842.

    Article  CAS  PubMed  Google Scholar 

  • Tan EM, Reimer G, Sullivan K. Iniracellular autoantigens: diagnostic fingerprints but aetiological dilemmas.Chichester, John Wiley & Sons, 1987.

    Google Scholar 

  • Trinick J. Titin and nebulin: protein rulers in muscle? TIBS 1994;19:405–408.

    CAS  PubMed  Google Scholar 

  • Trinick J. Titin as a scaffold and spring. Cytoskeleton Curr Biol 1996;6:258–260.

    Article  CAS  Google Scholar 

  • Trombitas K, Greaser ML, Pollack GH. Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 1997;18:345–351.

    Article  CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997;387:308–312.

    Article  CAS  PubMed  Google Scholar 

  • Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol Biol Cell 1997;8:705–717.

    CAS  PubMed  Google Scholar 

  • van der Ven PF, Fürst DO. Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro. Cell Struct Funct 1997;22:163–171.

    Article  PubMed  Google Scholar 

  • Wang K, Fänger BO, Guyer CA, Staros JV Electrophoretic transfer of high-molecular weight proteins for immunostaining. Meth Enzymology 1989;172:687–696.

    Article  CAS  Google Scholar 

  • Wang K, McClure J, Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Champion LE, Biessmann H, Mason JM. Mapping a mutator, mu2, which increases the frequency of terminal deletions in Drosophila melanogaster. Mol Gen Genet 1994;245:598–607.

    CAS  PubMed  Google Scholar 

  • Warburton PE, Earnshaw WC. Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. Bioessays 1997;19:97–99.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phorphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 1999;97:99–109.

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP. Chromatin: structure and function. San Diego, CA: Academic Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Machado, C., Andrew, D.J. (2000). Titin as a Chromosomal Protein. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4267-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6916-5

  • Online ISBN: 978-1-4615-4267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics