Advertisement

Links in the Chain: The Contribution of Kettin to the Elasticity of Insect Muscles

  • Belinda Bullard
  • David Goulding
  • Charles Ferguson
  • Kevin Leonard
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

Asynchronous flight muscle fibers are activated by periodic stretches and need to be stiff for strain to be transmitted to the contractile system. Kettin associated with thin filaments and projectin with thick filaments contribute to fiber stiffness. Kettin extends along thin filaments with the N-terminus in the Z-disc and the C-terminus outside. C filaments connecting thick filaments to the Z-disc contain projectin but not kettin. Insect flight myofibrils have a titin PEVK epitope which is only exposed on stretch, suggesting it is short and inaccessible. It is concluded that kettin stiffens thin filaments near the Z-disc and projectin and titin provide elasticity to C filaments.

Keywords

Actin Filament Thin Filament Sarcomere Length Flight Muscle Thick Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auber J, Couteaux R. Ultrastructure de la strie Z dans des muscles de Diptères. J Microscopie 1963;2:309–24.Google Scholar
  2. Ayme-Southgate A, Vigoreaux JO, Benian GM, Pardue ML. Drvsophila has a twitchin/titin related gene that appears to encode projectin. Proc Natl Acad Sci USA 1991;88:7973–77.PubMedCrossRefGoogle Scholar
  3. Chan WP, Dickinson MH. In vivo length oscillation of indirect flight muscles in the fruit fly Drosophila melanogaster. J Exp Biol 1996;199:2767–74.PubMedGoogle Scholar
  4. Cheng N, Deatherage JF. Three-dimensional reconstruction of the Z-disk of sectioned bee flight muscle. J Cell Biol 1989;108:1761–74.PubMedCrossRefGoogle Scholar
  5. Daley J, Southgate R, Ayme-Southgate A. Structure of the Drosophilaprojectin protein: isoforms and implication for projectin filament assembly. J Mol Biol 1998;279:201–10.PubMedCrossRefGoogle Scholar
  6. Deatherage JF, Cheng N, Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z-disk by image analysis of oblique sections. J Cell Biol 1989;108:1775–82.PubMedCrossRefGoogle Scholar
  7. Fyrberg CC, Labeit S, Bullard B, Leonard K, Fyrberg EA. Drosophilaprojectin: relatedness to titin and twitchin and correlation with lethal (4) 102 CDaand bent-Dominant mutants. Proc Roy Socser B 1992;249:33–40.CrossRefGoogle Scholar
  8. Gautel M, Goulding D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 1996;385:11–14.PubMedCrossRefGoogle Scholar
  9. Granzier H, Wang K. Interplay between passive tension and strong and weak binding crossbridges in insect indirect flight muscle. J Gen Physiol 1993;101:235–70.PubMedCrossRefGoogle Scholar
  10. Granzier H, Helmes M, Trombitás K. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 1996;70:430–42.PubMedCrossRefGoogle Scholar
  11. Granzier H, Kellermayer M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin filament extraction. Amer J Physiol 1997;73:2043–53.Google Scholar
  12. Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herman B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-K ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–27.PubMedCrossRefGoogle Scholar
  13. Gregorio CC, Granzier H, Sorimachi H, Labeit, S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol 1999;11:18–25.PubMedCrossRefGoogle Scholar
  14. Kolmerer B, Clayton J, Benes V, Allen T, Ferguson C, Leonard K, Weber U, Knekt M, Ansorge W, Labeit S, Bullard B. Sequence and expression of the kettin gene in Drosophila melanogasterand Caenorhabditis elegans. J Mol Biol 2000,296:435–48.PubMedCrossRefGoogle Scholar
  15. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science.1995;270:293–96.PubMedCrossRefGoogle Scholar
  16. Lakey A, Ferguson C, Labeit S, Reedy M, Larkins A, Butcher G, Leonard K, Bullard B. Identification of high molecular weight proteins in insect flight and leg muscles. EMBO J 1990;9:3459–67.PubMedGoogle Scholar
  17. Lakey A, Labeit S, Gautel M, Ferguson C, Barlow D, Leonard K, Bullard B. Kettin, a large modular protein in the Z-disc of insect muscles. EMBO J 1993;12:2863–71.PubMedGoogle Scholar
  18. Linke WA, Ivemeyer M, Oliveri N, Kolmerer B, Riiegg JC, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 1996;261:62–71.PubMedCrossRefGoogle Scholar
  19. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Rüegg JC, Gautel M. Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 1997;73:905–19.PubMedCrossRefGoogle Scholar
  20. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mündel P. Characterizing titin’s I-band region as an entropic spring. J Cell Sci 1998;111:1567–74.PubMedGoogle Scholar
  21. Locker RH, Leet NG. Histology of highly stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res 1975;52:64–72.PubMedCrossRefGoogle Scholar
  22. Machado C, Sunkel CE, Andrew DJ. Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 1998;141:321–33.PubMedCrossRefGoogle Scholar
  23. Maki S, Ohtani Y, Kimura S, Maruyama K. Isolation and characterization of a kettin-like protein from crayfish claw muscle. J Muscle Res Cell Motil 1995;16:579–85.PubMedCrossRefGoogle Scholar
  24. Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–45.PubMedGoogle Scholar
  25. Nave R, Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterizations of an invertebrate mini-titin. J Cell sci 1990;95:535–44.PubMedGoogle Scholar
  26. Orlova A, Prochniewitz E, Egelman EH. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol 1995;245:598–607.PubMedCrossRefGoogle Scholar
  27. Peckham M, Molloy JE, Sparrow JC, White DCS. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil 1990;11:203–15.PubMedCrossRefGoogle Scholar
  28. Peckham M, White, DCS. Mechanical properties of demembranated flight muscle fibers from a dragonfly. J exp Biol 1991;159:135–47.Google Scholar
  29. Saide J, Chin-Bow S, Hogan J, Busquets-Turner L. Z-band proteins in the flight muscle and leg muscle of honeybee. J Muscle Res CellMotil 1990;11:125–36.CrossRefGoogle Scholar
  30. Trinick J. Cytoskeleton: titin as scaffold and spring. CurrBiol 1996;6:258–60.CrossRefGoogle Scholar
  31. Trombitás K, Tigyi-Sebes A. Fine structure and mechanical properties of insect muscle. In Insect Flight Muscle, RT Tregear, ed. Elsevier, Amsterdam 1977;79–90.Google Scholar
  32. Trombitás K, Tigyi-Sebes A. Crossbridge interaction with oppositely polarized actin filaments in double-overlap zones of insect flight muscle. Nature 1984;309:168–70.PubMedCrossRefGoogle Scholar
  33. Trombitás K, Pollack GH. Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 1993;14:416–22.PubMedCrossRefGoogle Scholar
  34. Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near the Z-line titin attaches to actin while under tension. Amer J Physiol 1997;273:PC662–70.Google Scholar
  35. Trombitás K, Greaser M, Labeit S, Jin J-P, Kellermeyer M, Helmes M, Granzier H. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998;140:853–59.PubMedCrossRefGoogle Scholar
  36. van Straaten M, Goulding D, Kolmerer B, Labeit S, Clayton J, Leonard K, Bullard B. Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol 1999;285:1549–62.PubMedCrossRefGoogle Scholar
  37. White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983;343:31–57.PubMedGoogle Scholar
  38. White DCS, Thorson J. The kinetics of muscle contraction. Prog Biophys 1973;27:175–255.CrossRefGoogle Scholar
  39. Young P, Ferguson C, Banuelos S, Gautel, M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of α-actinin. EMBO J 1998;17:1614–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Belinda Bullard
    • 1
  • David Goulding
    • 1
  • Charles Ferguson
    • 1
  • Kevin Leonard
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations