Skip to main content

Connecting Filaments: A Historical Prospective

  • Chapter
Elastic Filaments of the Cell

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 481))

Abstract

This short review covers the development of the extensible filament research from the very beginning until the most recent results. This work emphasizes the milestones of discovery, which led us from initial observations that were solely ultrastructural to the molecular understanding of the extensible process of these filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashhurst DE. Z-line of the flight muscle of belostomatid water bugs. J Mol Biol 1967;27:385–389.

    Article  PubMed  CAS  Google Scholar 

  • Ashhurst DE. The Z-line in Insect flight muscle. J Mol Biol 1971;27:385–389.

    Article  Google Scholar 

  • Ashhurst DE. “The Z-line: Its structure and evidence of connecting filaments.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • Auber J, Couteaux R. Ultrastructure de la striae Z dans des muscules de diptéres. J Microsc 1963;2:309–316.

    Google Scholar 

  • Bullard B. Contractile proteins of insect fight muscle. Trends Biochem Sci 1983;8:68–70.

    Article  CAS  Google Scholar 

  • Bullard B, Hammond KS, Luke BM. “Immunological investigation of proteins associated with thick filaments of insect flight muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • Carlson F, Knappeis GG, Buchtal F. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol 1961;11:91–117.

    Google Scholar 

  • Cheng N, Deatherage JF. Three dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol 1989:108:1761–1764.

    Article  PubMed  CAS  Google Scholar 

  • Cullen MJ. Doctoral Thesis, Oxford University, Oxford, England, 1971.

    Google Scholar 

  • Daley J, Southgate R, Ayme-Southgate A. Structure of the Drosophila projectin protein: isoforms and implication for projectin filament assembly. J Mol Biol 1998;279:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Deatherage JF, Cheng N, Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique section. J Cell Biol 1989;108:1775–1782.

    Article  PubMed  CAS  Google Scholar 

  • Draper MH, Hodge AJ. Studies on muscle with the electron microscope. I. The ultra structure of toad striated muscle. Aust J Exp Biol Med Sci1949;27;465–503.

    Article  Google Scholar 

  • Edwards RF, Lucaveche C, Reedy MK. The A-bee-Z problem of actin filament rotation in insect flight muscle, Biophys J 1994;A190 (Abstract).

    Google Scholar 

  • Ernst E, Straub FB. Symposium on Muscle, Budapest, Adademiai, Kiado, 1968.

    Google Scholar 

  • Funatsu T, Kono E, Higuchi S, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 1993;120:711–724.

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map often nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–1572.

    Article  PubMed  Google Scholar 

  • Garamvölgyi N. Observations preliminaries sur la structure de las striae Z dans le muscle alaire de l’Abeille. J Microsc 1963;2:107–112.

    Google Scholar 

  • Garamvölgyi N. The arrangement of the myofilaments in the insect flight muscle. I. J Ultrastruc Res 1965;13:409–424.

    Article  Google Scholar 

  • Garamvölgyi N. “The functional morphology of muscle.” In Contractile Proteins and Muscle, K Laki, ed. New York, NY: Dekker, 1971.

    Google Scholar 

  • Garamvölgyi N, Biczo G, Ladik J, Eöry A. Forces acting between muscle filaments. II. A theoretical computation of the resting elasticity curve. Acta Biochim Biophys Acad Sci Hung 1973;8:57–67.

    PubMed  Google Scholar 

  • Garamvölgyi N, Biczo G, Eöry A, Suhai S. Forces acting between muscle filaments. III. A mathematical computation of the resting elasticity of bee wing muscle. Acta Biochim Biophys Acad Sci Hung 1974;9:233–238.

    PubMed  Google Scholar 

  • Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73:2043–2053.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B. The NH2 terminus of titin spans the Z-disk: its interaction with a novel 19-kD ligand (t-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Bio 1999;11:18–25.

    Article  CAS  Google Scholar 

  • Hanson J. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.

    Google Scholar 

  • Hanson J, Huxley HE. The structural basis of contraction in striated muscle. Symp Soc Exp Biol 1956;9:228–264.

    Google Scholar 

  • Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat Cardiac titin’s unique N2B sequence titin is an adjustable spring. Circ Res 1999;84:1339–1352.

    Article  PubMed  CAS  Google Scholar 

  • Hodge AJ. Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle. J Bioysic and Biochem Cytol 1955;1:361–380.

    Article  CAS  Google Scholar 

  • Horowits R. The physiological role of titin in striated muscle. Rev Physiol Biochem Pharm 1999;138:57–96.

    Article  CAS  Google Scholar 

  • Hoyle G. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.

    Google Scholar 

  • Huxley HE. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.

    Google Scholar 

  • Huxley AF. Muscular contraction. J Physiol (Lond) 1974;243:1–43.

    CAS  Google Scholar 

  • Huxley AF, Niedergerke R. Structure changes in muscle during contraction. Nature 1954;173:971–972.

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Peachey LD. The maximum length for contraction in vertebrate striated muscle. J Physiol (Lond) 1961;156:150–165.

    CAS  Google Scholar 

  • Huxley HE, Hanson J. Changes in the cross striations of muscle during contraction and stretch and their structural interpretation. Nature 1954;173:973–976.

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE. The double array of filaments in cross-striated muscle. J Biophysic Biochem Cytol 1957;3:631–647.

    Article  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1109–1112.

    Article  Google Scholar 

  • Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B, Linke WA. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 1997;80:290–294.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Mundel P, Sockmeier MR, Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Nail Acad Sci USA 1998a;95:8052–8057.

    Article  CAS  Google Scholar 

  • Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mundel P. Characterizing titin’s I-band Ig domain region as an entropie spring. J Cell Sci 1998b;111:1567–1574.

    PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gantel M, Witt C, Labeit S, Gregorio C. I-band titin in cardiac muscle is a three element molecular spring and is crtical for maintaining thin filament structure. J Cell Biol 1999;146:631–644.

    Article  PubMed  CAS  Google Scholar 

  • Locker RH, Leet NG. Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruc Res 1975;52:64–75.

    Article  CAS  Google Scholar 

  • Locker RH, Leet NG. Histology of highly-stretched beef muscle. II. Further evidence on the location and nature of gap filaments. J Ultrastruc Res 1976a;55:157–172.

    Article  CAS  Google Scholar 

  • Locker RH, Leet NG. Histology of highly stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers. J Ultrastruc Res1976b;56:31–38.

    Article  CAS  Google Scholar 

  • Locker RH, Daines GJ, Leet NG. Histology of highly-stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during pre-rigor blending. J Ultrastruct Res 1976;55:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Locker RH, Daines GJ, Carse WA, Leet NG. Meat tenderness and the gap filaments. Meat Sci 1977;1:87–104.

    Article  PubMed  CAS  Google Scholar 

  • Magid AD, Tings-Beal HP, Casvel M, Koutis T, Urcareche C. “Connecting filaments, core structures to the sliding filament model.” In Contractile Mechanism of Muscle, GH Pollack, H Sugi, eds. New York, NY: Plenum Press, 1984.

    Google Scholar 

  • Maruyama K. Connectin, an elastic protein of striated muscle. Biophys Chem 1994;50:73–85.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K. ConnectinJtitin, giant elastic protein of muscle. FASEB J 1997;11:341–345.

    PubMed  CAS  Google Scholar 

  • Maruyama K, Kimura S, Ohashi K, Kuwano Y. Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J Biochem 1981;89:701–709.

    PubMed  CAS  Google Scholar 

  • McNeill PA, Hoyle G. Evidence for superthin filaments. Am Zool 1967;7:483–498.

    Google Scholar 

  • Nave R, Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci 1990;95:535–544.

    PubMed  CAS  Google Scholar 

  • Neumann T, Fauver M, Pollack GH. Elastic properties of isolated thick filaments measured by nanofabricated cantilevers. Biophys J 1998;75:938–947.

    Article  PubMed  CAS  Google Scholar 

  • Pringle JW The Contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol 1967;17:1–60.

    Article  PubMed  CAS  Google Scholar 

  • Pringle JWS. “The mechanical characteristic of insect fibrillar muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • Reedy MK. “Electron microscope observations concerning the behavior of the cross-bridge in striated muscle.” In Contractility of Muscle Cells and Related Processes, RJ Podolsky, ed. Englewood Cliffs, NJ: Prentice-Hall, 1971.

    Google Scholar 

  • Rozsa G, Szent-Györgyi A, Wyckoff RWG. The fine structure of myofibrils. Exp Cell Res 1950;1:194–205.

    Article  Google Scholar 

  • Saide JD. Identification of a connecting filament protein in insect fibrillar flight muscle. J Molec Biol 1981,153:661–679.

    Article  PubMed  CAS  Google Scholar 

  • Saide JD, Ulrrick WC. Fine structure of the honeybee Z disk. J Mol Biol 1973;79:329–337.

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand F. The connections between A-and I-band filaments in striated frog muscle. J Ultrastruc Res 1962;7:225–246.

    Article  Google Scholar 

  • Steiger GJ. “Stretch activation and tension transients in cardiac, skeletal and insect flight muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomédical Press, 1977.

    Google Scholar 

  • Suzuki S, Sugi H. Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers. J Gen Physiol 1983;81:531–546.

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT. Insect Flight Muscle. Amsterdam: Elsevier/North Holland Biomédical Press, 1977.

    Google Scholar 

  • Trinick F. Cytoskeleton: titin as scaffold and springs. Current Biol 1996;6:258–260.

    Article  CAS  Google Scholar 

  • Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 1997;273:662–670.

    Google Scholar 

  • Trombitás K, Pollack GH. Elastic properties of the titin filaments in the Z-line region of vertebrate muscle. J Musc Res Cell Motil 1993;14:416–422.

    Article  Google Scholar 

  • Trombitás K, Pollack GH. Actin filaments in honeybee flight muscle move collectively. Cell Motil Cytoskeleton 1995;32:145–150.

    Article  PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. Continuity of thick and thin filaments. Acta Biochim Biophys Acad Sci Hung 1972;7:193–194.

    PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. Direct evidence for connecting C filaments in flight muscle of honey bee. Acta Biochim Biophys Acad Sci Hung 1974;9:243–253.

    PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. The Z-line of the flight muscle of honey-bee. Acta Biochim Biophys Acad Sci Hung 1975;10:83–93.

    PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. Fine structure and mechanical properties of insect muscle. In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • Trombitás K, Tigyi-Sebes A. The continuity of thick filaments between sarcomeres in honey bee flight muscle. Nature 1979;281:319–320.

    Article  PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. Cross-bridge interaction with oppositely polarized actin filaments in double-overlap zones of insect flight muscle. Nature 1984;309:168–170.

    Article  PubMed  Google Scholar 

  • Trombitás K, Tigyi-Sebes A. How actin filament polarity affects crossbridge force in doubly-overlapped insect muscle. J Muscle Res Cell Motil 1985;126:2285–2288.

    Google Scholar 

  • Trombitás K, Tigyi-Sebes A. Structure of thick filament from insect flight muscle. Acta Biochim Biophys Acad Sci Hung 1986;21:115–128.

    Google Scholar 

  • Trombitás K, Tigyi-Sebes A, Pallai G. “The paramyosin content and localization in the honey bee.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • Trombitás K, Baatsen PH, Lin JJ, Lemanski LF, Pollack GH. Immunoelectron microscopic observations on tropomyosin localization in striated muscle. J Muscle Res Cell Motil 1990;11:445–52.

    Article  PubMed  Google Scholar 

  • Trombitás K, Baatsen P, Kellermayer M, Pollack GH. Nature and origin of gap filaments in striated muscle. J Cell Sci 1991;100:809–814.

    PubMed  Google Scholar 

  • Trombitás K, Pollack GH, Wright F, Wang K. Elastic properties of titin filaments demonstrated using a freeze-fracture technique. Cell Motil Cytoskel 1993;24:274–283

    Article  Google Scholar 

  • Trombitás K, Jin JP, Granzier H. The mechanically active domain of titin in cardiac muscle. Circ Res 1995;77:856–861.

    Article  PubMed  Google Scholar 

  • Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998a;140:853–859.

    Article  PubMed  Google Scholar 

  • Trombitás K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 1998b;122:188–196.

    Article  PubMed  Google Scholar 

  • Trombitás K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissecton of N2B cardiac titin’s extensivility. Biophys J 1999;77:3189–3196.

    Article  PubMed  Google Scholar 

  • Ullrick WC, Toselli PA, Chase D, Dasse K. Are there extensions of thick filaments to the Z line in vertebrate and invertebrate striated muscle? J Ultrastruc Res 1977;60:263–271.

    Article  CAS  Google Scholar 

  • Wang K. “Cytoskeletal matrix in striated muscle: The role of titin, nebulin and intermediate filaments.” In Contractile Mechanisms in Muscle, GH Pollack, H Sugi, eds. New York, NY: Plenum Press, 1984.

    Google Scholar 

  • Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle review and hypothesis. Cell Muscle Motil 1985;6:315–369.

    PubMed  CAS  Google Scholar 

  • Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv in Biophys 1996,33:125–132.

    Google Scholar 

  • Wang K, McClure J, Tu A. Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.

    Article  PubMed  CAS  Google Scholar 

  • Wang SM, Greaser M. Immunocytoskeletal studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Musc Res Cell Motil 1985;6:293–312.

    Article  CAS  Google Scholar 

  • White DCS. Doctoral Thesis, Oxford University, Oxford, England, 1967.

    Google Scholar 

  • White DCS. “The resting elasticity of insect flight muscle and properties of the cross-bridge cycle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.

    Google Scholar 

  • White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983;343:31–57.

    PubMed  CAS  Google Scholar 

  • Zebe E, Meinrenken W, Ruegg JC. Supercontaction of glycerol extracted asychronic insect muscles in the presence of ITP. ZZellforsch Mikrosk Anat 1968;87:603–621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trombitás, K. (2000). Connecting Filaments: A Historical Prospective. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4267-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6916-5

  • Online ISBN: 978-1-4615-4267-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics