Advertisement

Connecting Filaments: A Historical Prospective

  • Károly Trombitás
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 481)

Abstract

This short review covers the development of the extensible filament research from the very beginning until the most recent results. This work emphasizes the milestones of discovery, which led us from initial observations that were solely ultrastructural to the molecular understanding of the extensible process of these filaments.

Keywords

Thin Filament Sarcomere Length Flight Muscle Thick Filament Vertebrate Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashhurst DE. Z-line of the flight muscle of belostomatid water bugs. J Mol Biol 1967;27:385–389.PubMedCrossRefGoogle Scholar
  2. Ashhurst DE. The Z-line in Insect flight muscle. J Mol Biol 1971;27:385–389.CrossRefGoogle Scholar
  3. Ashhurst DE. “The Z-line: Its structure and evidence of connecting filaments.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  4. Auber J, Couteaux R. Ultrastructure de la striae Z dans des muscules de diptéres. J Microsc 1963;2:309–316.Google Scholar
  5. Bullard B. Contractile proteins of insect fight muscle. Trends Biochem Sci 1983;8:68–70.CrossRefGoogle Scholar
  6. Bullard B, Hammond KS, Luke BM. “Immunological investigation of proteins associated with thick filaments of insect flight muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  7. Carlson F, Knappeis GG, Buchtal F. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol 1961;11:91–117.Google Scholar
  8. Cheng N, Deatherage JF. Three dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol 1989:108:1761–1764.PubMedCrossRefGoogle Scholar
  9. Cullen MJ. Doctoral Thesis, Oxford University, Oxford, England, 1971.Google Scholar
  10. Daley J, Southgate R, Ayme-Southgate A. Structure of the Drosophila projectin protein: isoforms and implication for projectin filament assembly. J Mol Biol 1998;279:201–210.PubMedCrossRefGoogle Scholar
  11. Deatherage JF, Cheng N, Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique section. J Cell Biol 1989;108:1775–1782.PubMedCrossRefGoogle Scholar
  12. Draper MH, Hodge AJ. Studies on muscle with the electron microscope. I. The ultra structure of toad striated muscle. Aust J Exp Biol Med Sci1949;27;465–503.CrossRefGoogle Scholar
  13. Edwards RF, Lucaveche C, Reedy MK. The A-bee-Z problem of actin filament rotation in insect flight muscle, Biophys J 1994;A190 (Abstract).Google Scholar
  14. Ernst E, Straub FB. Symposium on Muscle, Budapest, Adademiai, Kiado, 1968.Google Scholar
  15. Funatsu T, Kono E, Higuchi S, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 1993;120:711–724.PubMedCrossRefGoogle Scholar
  16. Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map often nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–1572.PubMedCrossRefGoogle Scholar
  17. Garamvölgyi N. Observations preliminaries sur la structure de las striae Z dans le muscle alaire de l’Abeille. J Microsc 1963;2:107–112.Google Scholar
  18. Garamvölgyi N. The arrangement of the myofilaments in the insect flight muscle. I. J Ultrastruc Res 1965;13:409–424.CrossRefGoogle Scholar
  19. Garamvölgyi N. “The functional morphology of muscle.” In Contractile Proteins and Muscle, K Laki, ed. New York, NY: Dekker, 1971.Google Scholar
  20. Garamvölgyi N, Biczo G, Ladik J, Eöry A. Forces acting between muscle filaments. II. A theoretical computation of the resting elasticity curve. Acta Biochim Biophys Acad Sci Hung 1973;8:57–67.PubMedGoogle Scholar
  21. Garamvölgyi N, Biczo G, Eöry A, Suhai S. Forces acting between muscle filaments. III. A mathematical computation of the resting elasticity of bee wing muscle. Acta Biochim Biophys Acad Sci Hung 1974;9:233–238.PubMedGoogle Scholar
  22. Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73:2043–2053.PubMedCrossRefGoogle Scholar
  23. Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B. The NH2 terminus of titin spans the Z-disk: its interaction with a novel 19-kD ligand (t-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.PubMedCrossRefGoogle Scholar
  24. Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Bio 1999;11:18–25.CrossRefGoogle Scholar
  25. Hanson J. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.Google Scholar
  26. Hanson J, Huxley HE. The structural basis of contraction in striated muscle. Symp Soc Exp Biol 1956;9:228–264.Google Scholar
  27. Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat Cardiac titin’s unique N2B sequence titin is an adjustable spring. Circ Res 1999;84:1339–1352.PubMedCrossRefGoogle Scholar
  28. Hodge AJ. Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle. J Bioysic and Biochem Cytol 1955;1:361–380.CrossRefGoogle Scholar
  29. Horowits R. The physiological role of titin in striated muscle. Rev Physiol Biochem Pharm 1999;138:57–96.CrossRefGoogle Scholar
  30. Hoyle G. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.Google Scholar
  31. Huxley HE. “General Discussion.” In Symposium on Muscle, E Ernst, FB Straub, eds. Budapest, Adademiai, Kiado, 1968.Google Scholar
  32. Huxley AF. Muscular contraction. J Physiol (Lond) 1974;243:1–43.Google Scholar
  33. Huxley AF, Niedergerke R. Structure changes in muscle during contraction. Nature 1954;173:971–972.PubMedCrossRefGoogle Scholar
  34. Huxley AF, Peachey LD. The maximum length for contraction in vertebrate striated muscle. J Physiol (Lond) 1961;156:150–165.Google Scholar
  35. Huxley HE, Hanson J. Changes in the cross striations of muscle during contraction and stretch and their structural interpretation. Nature 1954;173:973–976.PubMedCrossRefGoogle Scholar
  36. Huxley HE. The double array of filaments in cross-striated muscle. J Biophysic Biochem Cytol 1957;3:631–647.CrossRefGoogle Scholar
  37. Kellermayer MS, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276:1109–1112.CrossRefGoogle Scholar
  38. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.PubMedCrossRefGoogle Scholar
  39. Labeit S, Kolmerer B, Linke WA. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 1997;80:290–294.PubMedCrossRefGoogle Scholar
  40. Linke WA, Ivemeyer M, Mundel P, Sockmeier MR, Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Nail Acad Sci USA 1998a;95:8052–8057.CrossRefGoogle Scholar
  41. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H, Mundel P. Characterizing titin’s I-band Ig domain region as an entropie spring. J Cell Sci 1998b;111:1567–1574.PubMedGoogle Scholar
  42. Linke WA, Rudy DE, Centner T, Gantel M, Witt C, Labeit S, Gregorio C. I-band titin in cardiac muscle is a three element molecular spring and is crtical for maintaining thin filament structure. J Cell Biol 1999;146:631–644.PubMedCrossRefGoogle Scholar
  43. Locker RH, Leet NG. Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruc Res 1975;52:64–75.CrossRefGoogle Scholar
  44. Locker RH, Leet NG. Histology of highly-stretched beef muscle. II. Further evidence on the location and nature of gap filaments. J Ultrastruc Res 1976a;55:157–172.CrossRefGoogle Scholar
  45. Locker RH, Leet NG. Histology of highly stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers. J Ultrastruc Res1976b;56:31–38.CrossRefGoogle Scholar
  46. Locker RH, Daines GJ, Leet NG. Histology of highly-stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during pre-rigor blending. J Ultrastruct Res 1976;55:173–181.PubMedCrossRefGoogle Scholar
  47. Locker RH, Daines GJ, Carse WA, Leet NG. Meat tenderness and the gap filaments. Meat Sci 1977;1:87–104.PubMedCrossRefGoogle Scholar
  48. Magid AD, Tings-Beal HP, Casvel M, Koutis T, Urcareche C. “Connecting filaments, core structures to the sliding filament model.” In Contractile Mechanism of Muscle, GH Pollack, H Sugi, eds. New York, NY: Plenum Press, 1984.Google Scholar
  49. Maruyama K. Connectin, an elastic protein of striated muscle. Biophys Chem 1994;50:73–85.PubMedCrossRefGoogle Scholar
  50. Maruyama K. ConnectinJtitin, giant elastic protein of muscle. FASEB J 1997;11:341–345.PubMedGoogle Scholar
  51. Maruyama K, Kimura S, Ohashi K, Kuwano Y. Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J Biochem 1981;89:701–709.PubMedGoogle Scholar
  52. McNeill PA, Hoyle G. Evidence for superthin filaments. Am Zool 1967;7:483–498.Google Scholar
  53. Nave R, Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci 1990;95:535–544.PubMedGoogle Scholar
  54. Neumann T, Fauver M, Pollack GH. Elastic properties of isolated thick filaments measured by nanofabricated cantilevers. Biophys J 1998;75:938–947.PubMedCrossRefGoogle Scholar
  55. Pringle JW The Contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol 1967;17:1–60.PubMedCrossRefGoogle Scholar
  56. Pringle JWS. “The mechanical characteristic of insect fibrillar muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  57. Reedy MK. “Electron microscope observations concerning the behavior of the cross-bridge in striated muscle.” In Contractility of Muscle Cells and Related Processes, RJ Podolsky, ed. Englewood Cliffs, NJ: Prentice-Hall, 1971.Google Scholar
  58. Rozsa G, Szent-Györgyi A, Wyckoff RWG. The fine structure of myofibrils. Exp Cell Res 1950;1:194–205.CrossRefGoogle Scholar
  59. Saide JD. Identification of a connecting filament protein in insect fibrillar flight muscle. J Molec Biol 1981,153:661–679.PubMedCrossRefGoogle Scholar
  60. Saide JD, Ulrrick WC. Fine structure of the honeybee Z disk. J Mol Biol 1973;79:329–337.PubMedCrossRefGoogle Scholar
  61. Sjöstrand F. The connections between A-and I-band filaments in striated frog muscle. J Ultrastruc Res 1962;7:225–246.CrossRefGoogle Scholar
  62. Steiger GJ. “Stretch activation and tension transients in cardiac, skeletal and insect flight muscle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomédical Press, 1977.Google Scholar
  63. Suzuki S, Sugi H. Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers. J Gen Physiol 1983;81:531–546.PubMedCrossRefGoogle Scholar
  64. Tregear RT. Insect Flight Muscle. Amsterdam: Elsevier/North Holland Biomédical Press, 1977.Google Scholar
  65. Trinick F. Cytoskeleton: titin as scaffold and springs. Current Biol 1996;6:258–260.CrossRefGoogle Scholar
  66. Trombitás K, Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 1997;273:662–670.Google Scholar
  67. Trombitás K, Pollack GH. Elastic properties of the titin filaments in the Z-line region of vertebrate muscle. J Musc Res Cell Motil 1993;14:416–422.CrossRefGoogle Scholar
  68. Trombitás K, Pollack GH. Actin filaments in honeybee flight muscle move collectively. Cell Motil Cytoskeleton 1995;32:145–150.PubMedCrossRefGoogle Scholar
  69. Trombitás K, Tigyi-Sebes A. Continuity of thick and thin filaments. Acta Biochim Biophys Acad Sci Hung 1972;7:193–194.PubMedGoogle Scholar
  70. Trombitás K, Tigyi-Sebes A. Direct evidence for connecting C filaments in flight muscle of honey bee. Acta Biochim Biophys Acad Sci Hung 1974;9:243–253.PubMedGoogle Scholar
  71. Trombitás K, Tigyi-Sebes A. The Z-line of the flight muscle of honey-bee. Acta Biochim Biophys Acad Sci Hung 1975;10:83–93.PubMedGoogle Scholar
  72. Trombitás K, Tigyi-Sebes A. Fine structure and mechanical properties of insect muscle. In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  73. Trombitás K, Tigyi-Sebes A. The continuity of thick filaments between sarcomeres in honey bee flight muscle. Nature 1979;281:319–320.PubMedCrossRefGoogle Scholar
  74. Trombitás K, Tigyi-Sebes A. Cross-bridge interaction with oppositely polarized actin filaments in double-overlap zones of insect flight muscle. Nature 1984;309:168–170.PubMedCrossRefGoogle Scholar
  75. Trombitás K, Tigyi-Sebes A. How actin filament polarity affects crossbridge force in doubly-overlapped insect muscle. J Muscle Res Cell Motil 1985;126:2285–2288.Google Scholar
  76. Trombitás K, Tigyi-Sebes A. Structure of thick filament from insect flight muscle. Acta Biochim Biophys Acad Sci Hung 1986;21:115–128.Google Scholar
  77. Trombitás K, Tigyi-Sebes A, Pallai G. “The paramyosin content and localization in the honey bee.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  78. Trombitás K, Baatsen PH, Lin JJ, Lemanski LF, Pollack GH. Immunoelectron microscopic observations on tropomyosin localization in striated muscle. J Muscle Res Cell Motil 1990;11:445–52.PubMedCrossRefGoogle Scholar
  79. Trombitás K, Baatsen P, Kellermayer M, Pollack GH. Nature and origin of gap filaments in striated muscle. J Cell Sci 1991;100:809–814.PubMedGoogle Scholar
  80. Trombitás K, Pollack GH, Wright F, Wang K. Elastic properties of titin filaments demonstrated using a freeze-fracture technique. Cell Motil Cytoskel 1993;24:274–283CrossRefGoogle Scholar
  81. Trombitás K, Jin JP, Granzier H. The mechanically active domain of titin in cardiac muscle. Circ Res 1995;77:856–861.PubMedCrossRefGoogle Scholar
  82. Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: entropie elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998a;140:853–859.PubMedCrossRefGoogle Scholar
  83. Trombitás K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 1998b;122:188–196.PubMedCrossRefGoogle Scholar
  84. Trombitás K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissecton of N2B cardiac titin’s extensivility. Biophys J 1999;77:3189–3196.PubMedCrossRefGoogle Scholar
  85. Ullrick WC, Toselli PA, Chase D, Dasse K. Are there extensions of thick filaments to the Z line in vertebrate and invertebrate striated muscle? J Ultrastruc Res 1977;60:263–271.CrossRefGoogle Scholar
  86. Wang K. “Cytoskeletal matrix in striated muscle: The role of titin, nebulin and intermediate filaments.” In Contractile Mechanisms in Muscle, GH Pollack, H Sugi, eds. New York, NY: Plenum Press, 1984.Google Scholar
  87. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle review and hypothesis. Cell Muscle Motil 1985;6:315–369.PubMedGoogle Scholar
  88. Wang K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv in Biophys 1996,33:125–132.Google Scholar
  89. Wang K, McClure J, Tu A. Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.PubMedCrossRefGoogle Scholar
  90. Wang SM, Greaser M. Immunocytoskeletal studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Musc Res Cell Motil 1985;6:293–312.CrossRefGoogle Scholar
  91. White DCS. Doctoral Thesis, Oxford University, Oxford, England, 1967.Google Scholar
  92. White DCS. “The resting elasticity of insect flight muscle and properties of the cross-bridge cycle.” In Insect Flight Muscle, RT Tregear, ed. Amsterdam: Elsevier/North Holland Biomedical Press, 1977.Google Scholar
  93. White DCS. The elasticity of relaxed insect fibrillar flight muscle. J Physiol 1983;343:31–57.PubMedGoogle Scholar
  94. Zebe E, Meinrenken W, Ruegg JC. Supercontaction of glycerol extracted asychronic insect muscles in the presence of ITP. ZZellforsch Mikrosk Anat 1968;87:603–621.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Károly Trombitás
    • 1
  1. 1.Department of Veterinary and Comparative Anatomy, Pharmacology and PhysiologyWashington State UniversityPullmanUSA

Personalised recommendations