Skip to main content

Total Ionization Cross Sections for Electron Scattering from Atomic and Molecular Targets Using Quantum Mechanical Semi-Empirical Approach from Threshold to 400 eV

  • Chapter
Trends in Atomic and Molecular Physics
  • 192 Accesses

Abstract

Total ionization cross sections (σion) by electron impact are presented for a large class of atoms and molecules from the ionization threshold to the intermediate energy region where experimental data are available. A spherical complex optical potential (SCOP), averaged over all molecular orientations, is treated exactly in partial-wave analysis to yield elastic (σel), absorption (σabs) and total (σt) cross sections. The imaginary part of the SCOP takes into account the loss of flux due to inelastic (mainly the ionization) processes and yield the (σabs) quantity. We use σion(E) = p σabs(E) to determine the σion at an energy E, where p is a scaling factor for the corresponding target. In general, p is less than one and reflects the fraction of ionization cross section in the total inelastic channel. The SCOP term for each target is determined ab initio from target wavefunctions at the Hartree-Fock level. In particular, we present results on the σion for He, Ne, Ar, Kr, Xe, H2, N2, O2, F2, CO, NO, H20, H2S, CO2, N2O, NH3, C2H2, CH4, SiH4 and CF4 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. Wannier Phys. Rev. 90, 817 (1953).

    Article  ADS  MATH  Google Scholar 

  2. J. J. Thompson, Phil. Mag. 23, 449 (1912).

    Article  Google Scholar 

  3. Electron Impact Ionization”, edited by T. D. Mark and G. H. Dunn (Springer-Verlag, NY 1985)

    Google Scholar 

  4. H. Tawara and T. Kato, At. Data Nucl. Data Tables, 36, 167 (1987).

    Article  ADS  Google Scholar 

  5. Ce Ma, M. R. Bruce and R. A. Bonham, Phys. Rev. A 44, 2921 (1991).

    Article  ADS  Google Scholar 

  6. K. Stephan, H. Deutsch and T. D, Mark, J. Chem. Phys., 83, 5712 (1985).

    Article  ADS  Google Scholar 

  7. O. J. Orient and S. K. Srivastava, J. Phys. B 20, 3923 (1987).

    Article  ADS  Google Scholar 

  8. S. K. Srivastava and H. P. Nguyen, JPL Publications 87–2 (1987).

    Google Scholar 

  9. N. L. Djuric, I. M. Cadez and M. V. Kurepa, Int. J. Mass Spectrom. Ion Process, 83, R7 (1988).

    Article  Google Scholar 

  10. M. V. V. S. Rao, S. K. Srivastava, XVII ICPEAC, book of Abstracts (Brisbane, Australia 10–16 July, 1991 ) p. 254, 257.

    Google Scholar 

  11. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    Article  ADS  Google Scholar 

  12. R. C. Wetzel, F. A. Baiocchi, T. R. Hayes and R. S. Freund, Phys. Rev. A 35, 559 (1987); T. R. Hayes, R. C. Wetzel and R. S. Freund, Phys. Rev. A 35, 578 (1987); J. Chem. Phys., 88, 823 (1988); J. Chem. Phys., 89, 4035, 4042 (1988)

    Google Scholar 

  13. D. K. Jain and S. P. Khare, J. Phys. B9, 1429 (1976).

    ADS  Google Scholar 

  14. S. P. Khare and W. J. Meath, J. Phys. B 20, 2101 (1987).

    Article  ADS  Google Scholar 

  15. D. Margreiter, H. Deutsch, M. Schmidt and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 100, 157 (1990) and references therein.

    Google Scholar 

  16. D. Margreiter, H. Deutsch and T. D. Mark, Contrib. Plasma Phys. 30, 487 (1990).

    Article  ADS  Google Scholar 

  17. H. Deutsch and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 79, R1 (1987).

    Article  Google Scholar 

  18. H. Deutsch, P. Scheier and T. D. Mark, Int. J. Mass Spect. and Ion Proc. 74, 81 (1986).

    Article  Google Scholar 

  19. A. Jain, Phys. Rev. A 34, 3707 (1986); J. Chem. Phys. 86, 1289 (1987).

    Article  ADS  Google Scholar 

  20. A. Jain, J. Phys. B 22, 905 (1988)

    Article  ADS  Google Scholar 

  21. A. Jain and K. L. Baluja, Phys. Rev. A 45, 202 (1992).

    Article  ADS  Google Scholar 

  22. C. J. Joachain, “Quantum Collision Theory”, (North Holland, NY)

    Google Scholar 

  23. F. W. Byron and C. J. Joachain, Jr., Phys. Rev. A 15, 128 (1977).

    Article  ADS  Google Scholar 

  24. F. A. Gianturco and D. G. Thompson, Chem. Phys. Lett. 14, 110 (1976).

    Google Scholar 

  25. F. A. Gianturco and A. Jain, Phys. Rep. 143, 347 (1986).

    Article  ADS  Google Scholar 

  26. S. Hara, J. Phys. Soc. Japan, 22, 710 (1967).

    Article  Google Scholar 

  27. J. K. O’Connel and N. F. Lane, Phys. Rev. A 27, 1893 (1983); N. T. Padial and D. W. Norcross, Phys. Rev. A 29, 1742 (1984); F. A. Gianturco, A. Jain and L. C. Pantano, J. Phys. B 20, 571 (1987).

    Google Scholar 

  28. Froese-Fischer. C, “The Hartree-Fock Method for Atoms”, (Wiley, New York, 1977); Jain A, B. Etemadi and K. R. Karim, Physica Scripta 41 321 (1990); F. Salvat, J. D. Martinez, R. Mayol and J Parellada, Phys. Rev. A 36, 467 (1987).

    Google Scholar 

  29. M. A. Morrison, Comp. Phys. Commun.21, 63 (1980); L. A. Collins, D. W. Norcross and G. B. Schmid, Comp. Phys. Commun., 21, 79 (1980); A. D. McLean and M. Yoshmine, Int. J Quant. Chem. 1S, 313 (1967); P E Cade and A C Wahl, At. Data. Nuc.data Tables, 13 339 (1974); P. E. Cade and W. M. Hup, At. Data and Nuc. Data Tables, 15, 2 (1975); for polyatomic targets, F. A. Gianturco, D. G. Thompson and A. Jain (private communication)

    Google Scholar 

  30. G. Statszewska, D. W. Schwenke, D. Thirumalai and D. G. Truhlar, J. Phys.B 16, L281(1983); Phys. Rev. A 28, 2740 (1983); G. Statszewska, D. W. Schwenke, and D. G. Truhlar, J. Chem. Phys. 81, 335 (1984); Phys. Rev. A 29, 3078 (1984).

    Google Scholar 

  31. A. Gaudin and R. Hagemann, J. Chem. Phys., 64, 1209 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baluja, K.L. (2000). Total Ionization Cross Sections for Electron Scattering from Atomic and Molecular Targets Using Quantum Mechanical Semi-Empirical Approach from Threshold to 400 eV. In: Sud, K.K., Upadhyaya, U.N. (eds) Trends in Atomic and Molecular Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4259-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4259-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6912-7

  • Online ISBN: 978-1-4615-4259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics