Skip to main content
  • 191 Accesses

Abstract

Jaynes-Cummings model of quantum optical resonance is investigated using Tomonaga-Schwinger formalism and without using the rotating wave approximation. Detailed study of the fluctuations in the initial number state and coherent state is made as a function of the interaction strength, frequency detuning and the initial conditions. It is found that the counter rotating terms play an important role in the evolution of the quantum state and the entanglement between the atom and the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Meystre and M. Sargent III, Elements of Quantum Optics, Springer Verlag (1990)

    Google Scholar 

  2. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  3. Quantum Optics edited by. R. J. Glauber, Academic Press, (1969).

    Google Scholar 

  4. S. Stenholm. Physics Reports 6C, 1 (1973).

    Article  ADS  Google Scholar 

  5. N. B. Narozhny, J. J. Sanchez-Mondragon and J. H. Eberly, Phys. Rev. A 23, 23 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. R. Puri and G. S. Agarwal, Phys. Rev. A 33, 3610 (1986).

    Article  ADS  Google Scholar 

  7. J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990).

    Article  ADS  Google Scholar 

  8. S. M. Barnett and P. L. Knight, Phys. Rev. A 33, 2444 (1986).

    Article  ADS  Google Scholar 

  9. S. J. D. Phoenix and P. L. Knight, Ann. Phys. (N.Y.) 186, 381 (1988).

    Article  ADS  MATH  Google Scholar 

  10. C. J. Joachain, Quantum Collision Theory, North Holland, Amsterdam, (1983).

    Google Scholar 

  11. J. J. Sakurai, Modern Quantum Mechanics, The Benjamin/Cummings Publishing Company Inc., (1985).

    Google Scholar 

  12. G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L. Bonci, R. Roncaglia, B. J. West and P. Grigolini, Phys. Rev. Lett. 67, 2593 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathur, S., Upadhyaya, U.N. (2000). Quantum Optical Resonance. In: Sud, K.K., Upadhyaya, U.N. (eds) Trends in Atomic and Molecular Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4259-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4259-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6912-7

  • Online ISBN: 978-1-4615-4259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics