Skip to main content

Comparative Studies of Microbial Communities on Stone Monuments in Temperate and Semi-Arid Climates

  • Chapter
Of Microbes and Art

Abstract

Climate is recognised to play an important part in influencing the activity of microorganisms on stone in monuments and other objects of cultural value. In the UK and Greece, the numbers and distribution of heterotrophic bacteria were not strongly related to seasonal changes in temperature and rainfall. At Portchester Castle, qualitative changes in bacterial populations have been observed; actinomycetes were found only on decayed stone and dominant on stone from Tell Basta, in semi-arid Egypt. In the Minoan Palace at Petrás and the fortifications of Khaniá, higher counts of halotolerant heterotrophic bacteria were found in sheltered areas on stone showing other biological growths and salt efflorescence. For all monuments, stones of lower mechanical strength supported higher bacterial counts and electron microscopy showed extensive sheets of biofilm. Estimations of carbohydrate in stone could also be related to whether the sites were exposed or protected. There is evidence to suggest that variations in the nature of bacterial populations may be dependent on season in temperate regions and in the Mediterranean climate related to the location within the monument. Biofilm production and perhaps halotolerance provide means by which bacteria resist adverse changes in moisture levels. Extreme fluctuations in moisture may induce major shifts in bacterial populations selecting filamentous, spore-forming types that penetrate deeper into the stone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, M. A., Nikulin, M., Köljalg, U., Andersson, M. C., Rainey, F., Reijula, K., Hintikka, E. -L. and Salkinoja-Salonen, M. 1997. Bacteria, moulds and toxins in water-damaged building materials. Appl. Environm. Microbiol. 63: 387–393.

    Google Scholar 

  • Appolonia, L., Vaudan, D. and De Leo, S. 1996. Projet des traveaux de conservation du théâtre romain d’ Aoste: Recherche et résultats. In Proceedings of the 8th International Congress on Deterioration and Conservation of Stone vol. 2, J. Riederer (ed.), Berlin p 1097–1107.

    Google Scholar 

  • Biscontin, G., Felix, C., Maravelaki, P. and Zendri, E.,1991. Characteristics, weathering forms and mechanisms of Istria stone in Venice. In Proceedings of the 2nd International Symposium on the Conservation of Monuments in the Mediterranean Basin D. Decrouez, J. Chamay and F. Zezza (eds.), Ville de Genève, Musée d’Histoire Naturelle et Musée d’Art and d’Histoire p 141–153.

    Google Scholar 

  • Bland W. and Rolls, D. 1998. Mechanical weathering processes. In Weathering. An Introduction to the Scientific Principles, Arnold, Great Britain p 85–114.

    Google Scholar 

  • Camuffo, D. 1995. Physical weathering of stones. The Science of the Total Environment 167: 1–14.

    Article  Google Scholar 

  • Christensen, B. E. and Characklis, W. G. 1990. Physical and chemical properties of biofilms In Biofilms W G Characklis and K. C. Marshall (eds.), Wiley-Interscience Publication p 93–130.

    Google Scholar 

  • Decho, A. W. 1994. Molecular-scale events influencing the macroscale cohesiveness of exopolymers. In Biostabilisation of minerals W. E. Krumbein, D. M. Peterson and L. J. Stal (eds.), Springer-Verlag p 138–148.

    Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Google Scholar 

  • Eckhardt, F. E. W. 1988. Influence of culture media employed in studying microbial weathering of building stone and monuments by heterotrophic bacteria and fungi. In 6th International Congress on Deterioration and Conservation of Stone, N. Copernicus University, Torun, Institute of Conservation and Restoration of Cultural Property, Press Department p 71–81.

    Google Scholar 

  • El-Nakeeb, M.A. and Lechevalier, H.A. 1962. Selective isolation of aerobic actinomycetes. J. Appl. Microbiol. 2: 75–77.

    Google Scholar 

  • Fookes, P. G., Gourley, C. S. and Ohikere, C. 1988. Rock weathering in engineering time. Quart. J. Eng. Geol. 21: 33–57.

    Article  Google Scholar 

  • Friedmann, E.I. and Ocampa-Friedmann, R. 1984. Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic habitat. In Current Perspectives in Microbial Ecology M.J. Klug and C.A. Reddy (eds.), Proceedings of the Third International Symposium on Microbial Ecology, Michigan State University p 177–185.

    Google Scholar 

  • Gerdes, G., Dunajtschik-Piewak, K., Riege, H., Taher, A. G., Krumbein, W. E. and Reineck, H.-E. 1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41: 1273–1294.

    Article  Google Scholar 

  • Guidobaldi, F. and Mecchi, A. M. 1985. Corrosion of marble by rain. The influence of surface roughness, rain intensity and additional washing. In Proceedings of the 5th International Congress on Deterioration and Conservation of Stone, vol. 1, Lausanne, Presses Polytechniques Romandes p 467–474.

    Google Scholar 

  • Guillitte, O. 1995. Bioreceptivity: a new concept for building ecology studies. The Science of the Total Environment 167: 215–220.

    Article  Google Scholar 

  • Halsey, D. P., Mitchell, D. J. and Dews, S. J. 1998. Influence of climatically induced cycles in physical weathering. Quart. J. Eng. Geol. 31: 359–367.

    Article  Google Scholar 

  • Jager, G. and Bruins, E.H. 1974. Effect of repeated drying at different temperatures on soil organic matter decomposition and characteristics, and on the soil microflora. Soil Biol. Biochem. 7: 153–159.

    Google Scholar 

  • Jenneman, G. E., McInerney, M. J. and Knapp, R. M. 1985. Microbial penetration through nutrient-saturated Berea sandstone. Appl. Environm. Microbiol. 51: 383–391.

    Google Scholar 

  • Krumbein, W. E., Diakumaku, E., Gehrmann, C., Gorbushina, A. A., Grote, G., Heyn, C., Kuroczkin, J., Schostak, V., Sterflinger, K., Warscheid, T., Wolf, B., Wollenzien, U., Yun-Kyung, Y. and Petersen, K. 1996. Chemoorganotrophic microorganisms as agents of decay in the destruction of objects of art - a summary. In Proceedings of 8th International Congress on Deterioration and Conservation of Stone, vol. 2, J. Riederer (ed.), Berlin; p. 631–636.

    Google Scholar 

  • Krumbein, W.E. and Gorbushina, G. 1995. Organic pollution and rock decay. In Biodeterioration of Constructional Materials, L.H.G. Morton (ed.) p. 277–284.

    Google Scholar 

  • Kuster, E. and Williams, S.T. 1964. Selection of media for isolation of actinomycetes. Nature 202: 928–929.

    Article  Google Scholar 

  • Lammel, G. and Metzig, G. 1997. Pollutant fluxes onto the facades of a historical monument. Atmospheric Environment 31: 2249–2259.

    Article  Google Scholar 

  • Lappin-Scott, H. M. and Costerton, J. W. 1990. Starvation and penetration of bacteria in soils and rocks. Experientia 46: 807–812.

    Article  Google Scholar 

  • Lewis, F.J. 1987. PhD thesis (CNAA) Investigations of bacteria on building stone and their role in stone decay. Portsmouth Polytechnic.

    Google Scholar 

  • Lewis, F. J., May, E. and Bravery, A. F. 1988. Metabolic activities of bacteria isolated from building stone and their relationship to stone decay. In Biodeterioration 7 p. 107–112.

    Google Scholar 

  • Lui, D., Wong, P.T.S. and Dutka, B.J. 1973. Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method. Water Res. 7: 741–746.

    Article  Google Scholar 

  • Mallory, L.M., Austin, B. and Colwell, R.R. 1977. Numerical taxonomy of bacteria isolated from the estuarine environment. Can. J. Microbiol. 23: 733–750.

    Google Scholar 

  • Nishioka, S. and Harada, T. 1958. Elongation of stones due to absorption of water. In Review of 12th Meeting of Japan Cement Association, Tokyo p. 66–67.

    Google Scholar 

  • Palmer, R. J. Jr. and Hirsch, P. 1991. Photosynthesis-based microbial communities on two churches in northern Germany: weathering of granite and glazed brick. Geomicrobiol. J. 9: 103–118.

    Article  Google Scholar 

  • Puhringer, J. 1996. Deterioration of materials by hydraulic pressure in salt/water systems - an outline model. In Proceedings of the 8th International Congress on Deterioration and Conservation of Stone, vol. I, J. Riederer (ed.), Berlin p. 545–556.

    Google Scholar 

  • Rodriquez-Navarro, C., Sebastian, E. and Rodriquez-Gallego, M. 1997. An urban model for dolomite precipitation: dolomite on weathered building stones. Sediment. Geol. 109: 111.

    Google Scholar 

  • Sand, W. 1997. Microbial mechanisms of deterioration of inorganic substrates a general mechanistic overview. Internat. Biodet. Biodeg. 40: 183–190.

    Google Scholar 

  • Schostak, V. and Krumbein, W. E. 1992. Occurrence of extremely halotolerant and moderate halophilic bacteria on salt impaired wallpaintings. In Proceedings of 7th International Congress on Deterioration and Conservation of Stone J. Delgado Rodriguez, F. Henriques and F. Telmo Jeremias (eds.), Lisbon p. 551–560.

    Google Scholar 

  • Silva, B., Prieto, B., Rivas, T., Sanchez-Biezma, M. J., Paz, G. and Carbellal, R. 1997. Rapid biological colonisation of a granitic building by lichens. Internat. Biodet. 40: 263–267.

    Article  Google Scholar 

  • Smith, D. I., Greenaway, M. A., Moses, C. and Spate, A. P. 1995. Limestone weathering in eastern Australia. Part 1: Erosion rates. Earth Surface Processes and Landforms 20: 451–463.

    Article  Google Scholar 

  • Tayler, S. 1991. PhD thesis Composition and Activity of Bacterial Populations found on Decaying Stonework. University of Portsmouth, UK.

    Google Scholar 

  • Tayler, S. and May, E. 1991. The seasonality of heterotrophic bacteria on sandstones from ancient monuments. Internat. Biodet. 28:49–64.

    Article  Google Scholar 

  • Tayler, S. and May, E. 1995. A comparison of methods for the measurement of microbial activity on stone. Studies in Conservation 40: 163–170.

    Article  Google Scholar 

  • Thierry, D. and Sand, W. 1995. Microbially Induced Corrosion. In Corrosion Mechanisms in Theory and Practice, P. Marcus and J. Oudar (eds.), Series in Corrosion Technology, 8: 457–498. Marcel Dekker Inc.

    Google Scholar 

  • Tiano, P., Accolla, P. and Tomaselli, L. 1995. Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb. Ecol. 29: 299–309.

    Google Scholar 

  • Tresner, H. D. and Hayes, J. A. 1970. Improved methodology for isolating soil microorganisms. Appl. Microbiol. 19: 186–187.

    Google Scholar 

  • Turk, N. and Dearman, W. R. 1986. Influence of water on engineering properties of weathered rocks. In Groundwater in Engineering Geology, Geological Society Engineering Geology Special Publication, no. 3, J. C. Cripps, F. G. Bell and M. G. Culshaw (eds.) p. 131–138.

    Google Scholar 

  • Warke, P.A. and Smith, B.J. 1994. Inheritance effects on the efficacy of salt weathering mechanisms in thermally cycled granite blocks under laboratory and field conditions. In Granite Weathering and Conservation. E. Bell and T.P. Cooper (eds.), Proceedings of a conference at Trinity College, Dublin p. 19–27.

    Google Scholar 

  • Warscheid, T. 1990. PhD thesis. Untersuchungen zur Biodeterioration von Sandsteinen unter besonderer Berücksichtigung der chemoheteroorganotrophen Bakterien University of Oldenburg, Germany.

    Google Scholar 

  • Warscheid, T., Becker, T. W., Braams, J., Gehrmann, C., Krumbein, W. E., Petersen, K. and Bruggerhoff, S. 1993. Studies of the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physicochemical properties in building material. In Conservation of Stone and Other Materials, M. J. Thiel (ed.), Proceedings of the International RILEM/UNESCO Congress. vol. 1. Causes of Disorder and Diagnosis, Paris, France. UNESCO p. 303–310.

    Google Scholar 

  • Webley, D.M., Henderson, M.E.K and Taylor, I.F. 1963. The microbiology of rocks and weathered stones. J. Soil Sci. 14: 102–112.

    Article  Google Scholar 

  • Wiggins, P. M. 1990. Role of water in some biological processes. Microbiol. Rev. 54: 432–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

May, E., Papida, S., Abdulla, H., Tayler, S., Dewedar, A. (2000). Comparative Studies of Microbial Communities on Stone Monuments in Temperate and Semi-Arid Climates. In: Ciferri, O., Tiano, P., Mastromei, G. (eds) Of Microbes and Art. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4239-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4239-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6904-2

  • Online ISBN: 978-1-4615-4239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics