Skip to main content

The Role of Pericytes in Controlling Angiogenesis In Vivo

  • Chapter
Angiogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 476))

Abstract

In order to evaluate the interaction between endothelial cells and the perivascular pericytes during physiological angiogenesis, stereological analysis of fine structure was performed on samples of rat skeletal muscle where capillary growth was induced to a similar extent by three different interventions (indirect electrical stimulation, vasodilatation by ot? -blockade, stretch due to synergist extirpation). There was a significant reduction in the relative area of contact between pericytes and the capillary abluminal surface with stimulation, and withdrawal of pericyte processes coincided with an increase in anatomical capillary supply. These data indicate that pericytes may play an anti-angiogenic role in vivo in normal adult tissue similar to that proposed for in vitro models of angiogenesis, with their retraction during increased muscle activity possibly releasing endothelial cells from their contact inhibition. However, following long-term peripheral vasodilatation expansion of the capillary bed was accompanied by a co-ordinated increase in pericytes, such that coverage of capillaries was similar to that in control muscles. In addition, growth of capillaries following prolonged stretch resulted in a slightly greater increase in the pericyte population, suggesting they may be permissive for endothelial cell migration. Thus, the role of pericytes in controlling physiological angiogenesis is dependent on the nature of the initial stimulus, suggesting that in vitro data have to be interpreted with caution when discussing the mechanism of capillary growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsopp, G and Gamble, H.J. (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J. Anat. 128: 155–168

    PubMed  CAS  Google Scholar 

  • Ausprunk, D.H. & Folkman, J. (1977) Migration and proliferation of endothelial cells in preformed and newly formed vessels during tumour angiogenesis. Microvasc. Res. 14: 53–65

    Article  PubMed  CAS  Google Scholar 

  • Bar, T., & Wolff, J.R. (1972) The formation of capillary basement membranes during internal vascularization of the rat’s cerebral cortex. Z. Zellforsch. 133: 231–248

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.D., Egginton, S. (1988) Capillary density and fine structure in rabbit papillary muscles after a high dose of norepinephrine. Microvascular. Res. 36: 1–12

    Article  CAS  Google Scholar 

  • Brown, M.D., Walter H., Hansen-Smith, F.M., Hudlicka O., Egginton, S. (1998) Lack of involvement of basic fibroblast growth factor (FGF-2) in capillary growth in skeletal muscles exposed to long-term contractile activity. Angiogenesis 2: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Cliff, W.J. (1963) Observations on healing tissue: A combined light and electron microscopic investigation. Philos. Trans. R. Soc. London 246: 305–325

    Article  Google Scholar 

  • Crocker, D.J., Murad, T.M. & Geer, J.C. (1970) Role of the pericyte in wound healing. An ultrastructural study. Exp. Mol. Pathol. 13: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Dawson, J.M., Hudlická, O. (1990) The effect of long-term administration of prazosin on the microcirculation in skeletal muscle. Cardiovasc. Res. 23: 913–920

    Article  Google Scholar 

  • De Oliveira, F. (1966) Pericyctes in diabetic retinopathy. Br. J. Opthal. 50: 134–143

    Article  Google Scholar 

  • Egginton, S. (1990) Morphometric analysis of tissue capillary supply. In: Boutilier, R.G. (ed) Vertebrate Gas Exchange from Environment to Cell. Advances in Comparative and Environmental Physiology 6: 73–141

    Google Scholar 

  • Egginton S., Hudlická, O., Glover, M. (1993) Fine structure of capillaries in ischaemic and non-ischaemic muscles in rat striated muscle. Effect of torbafylline. Int. J. Microcirc. Clin. Exp. 12:33–44

    PubMed  CAS  Google Scholar 

  • Egginton S., Hudlická, O., Brown, M.D., Graciotti L., Granata, A-L. (1996) In vivo pericyteendothelial cell interaction during angiogenesis in adult skeletal muscle. Microvasc. Res. 51:213–228

    Article  PubMed  CAS  Google Scholar 

  • Eppling, G.P., (1966) Electron microscopic observations of small blood vessels in the lungs and hearts of normal cattle and swine. Anat. Rec. 155 513–530

    Article  Google Scholar 

  • Gaudio E., Pannarale L., Caggiati, A., & Marinozzi, G. (1990) A three-dimensional study of the morphology and topography of pericytes in the microvascular bed of skeletal muscle. Scanning Microsc. 4: 491–500

    PubMed  CAS  Google Scholar 

  • Hansen-Smith F., Hudlická, O., Egginton, S. (1996) In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tiss. Res. 286: 123–136

    Article  CAS  Google Scholar 

  • Hansen-Smith, F.M., Egginton S., Hudlická, O. (1998) Growth of arterioles in chronically stimulated adult rat skeletal muscle. Microcirculation 5: 49–59

    PubMed  CAS  Google Scholar 

  • Hudlická, O. (1991) What makes blood vessels grow? J. Physiol. 444: 1–24

    PubMed  Google Scholar 

  • Hudlická, O., Brown, M.D., Egginton, S. (1992) Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72:369–1117

    PubMed  Google Scholar 

  • Hudická, O., Brown, M.D., Egginton, S. (1996) Angiogenesis in skeletal muscle. In: Maragoudakis, M.E. (ed.) ‘Molecular, cellular and clinical aspects of angiogenesis’ Plenum Press, New York. ppl41–150.

    Google Scholar 

  • Hudlicka O., Egginton S., Brown, M.D. (1998) Angiogenesis in heart and skeletal musclemodels for capillary growth. In: Maragoudakis, M.E. (ed) Angiogenesis: Models, modulators and clinical applications. Plenum Press, New York, pp 19–33

    Google Scholar 

  • Kuwabara T., Cogan, D.G. (1963) Retinal vascular patterns VI. Mural cells of the retinal capillaries. Arch Ophthalmol. 69: 492–502

    Article  PubMed  CAS  Google Scholar 

  • Matsusaka, T. (1975) Tridimensional views of the relationship of pericytes to endothelial cells of capillaries in the human choroid and retina. J. Electron. Microsc. 24: 13–18

    CAS  Google Scholar 

  • Murphy, D.D. & Wagner, R.C. (1994) Differential contractile response of cultured microvascular pericytes to vasoactive agents. Microcirculation. 1: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Nehls V., Denzer K., Drenckhan, D. (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270: 469–474.

    Article  PubMed  CAS  Google Scholar 

  • Nehls, V. and Drenckhaln, D. (1993) The versitility of microvascular pericytes: From mesenchyme to smooth muscle? Histochemistry 99, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb, P.M. & Herman, J.M. (1993) Pericyte growth and contractile phenotype: Modulation by endothelial-synthesized matrix and comparison with aortic smooth muscle. J. Cell Physiol. 155:385–393

    Article  PubMed  CAS  Google Scholar 

  • Orlidge A., D’Amore, P. A. (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105: 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  • Rhodin, J.A.G. (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18, 181–223

    Article  PubMed  CAS  Google Scholar 

  • Rhodin, J.A.G. and Fujita, H. (1989) Capillary growth in the mesentary of normal young rats. Intravital video and electron microscope analyses. J. Submicrosc. Cytol. Pathol. 21, 1–34

    PubMed  CAS  Google Scholar 

  • Schlmgemann, R.O., Rietveld, F.J.R., deWaal, R.M.W., Ferrone, S. & Ruiter, D.J. (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumours and in healing wounds. Am. J. Pathol. 136: 1393–1405

    Google Scholar 

  • Schor, A.M., Canfield, A.E., Sutton, A.B., Allen, T.D., Sloan, P. & Schor, S.L. (1992) The behaviour of pericytes in vitro: Relevance to angiogenesis and differentiation. In “Angiogenesis: Key Principles” (P.B. Weisz & R Langer, Eds) Birkhauser Verlag, Basel.

    Google Scholar 

  • Schulze, C, and Firth, J.A. (1993) Junctions between pericytes and the endothelium in rat myocardial capillaries: A morphometric and immunogold study. Cell Tissue Res. 271, 145–154

    Article  PubMed  CAS  Google Scholar 

  • Shepro D., and Morel N.M.L. (1993) Pericyte physiology FASEB. J. 7, 1031–1038

    Google Scholar 

  • Sims, D.E.(1986) The pericyte-a review. Tissue Cell 18: 153–174.

    Google Scholar 

  • Swinscoe, J.C. & Carlson, E.C. (1992) Capillary endothelial cells secrete a heparin-binding mitogen for pericytes J. Cell Sc. 103: 453–461

    CAS  Google Scholar 

  • Tilton, R.G., Kilo, C, and Williamson, J.R. (1979a) Pericycte-endothelial relationship in cardiac and skeletal muscle capillaries. Microvasc. Res. 18, 325–335

    Article  PubMed  CAS  Google Scholar 

  • Tilton, R.G., Kilo, C, Williamson, J.R., and Murch, D.W. (1979b) Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc. Res. 18, 336–352

    Article  PubMed  CAS  Google Scholar 

  • Tilton, R.G. (1991) Capillary pericyctes: Perspectives and future trends. J. Electron Microsc. Tech. 19, 327–344

    Article  PubMed  CAS  Google Scholar 

  • Weibel, E.R. (1974) On pericytes, particularly their existance on lung capillaries. Microvasc. Res. 8:218–235

    Article  PubMed  CAS  Google Scholar 

  • Zhou, A-L., Egginton S., Hudlická, O. (1998a) Ultrastructural study of three types of physiological angiogenesis in adult rat skeletal. In: Maragoudakis, M.E. (ed.) ‘Angiogenesis. Models, modulators and clinical applications’. Plenum Press, New York. pp556–557.

    Google Scholar 

  • Zhou, A-L., Egginton S., Brown, M.D., Hudlická, O. (1998b) Capillary growth m overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat. Rec. 252: 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, A-L., Egginton S., Hudlická, O., Brown, M.D. (1998c) Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with α1 antagonist prazosin. Cell Tiss. Res. 293: 293–303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Egginton, S., Zhou, AL., Hudlická, O., Brown, M.D. (2000). The Role of Pericytes in Controlling Angiogenesis In Vivo . In: Maragoudakis, M.E. (eds) Angiogenesis. Advances in Experimental Medicine and Biology, vol 476. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4221-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4221-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6895-3

  • Online ISBN: 978-1-4615-4221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics