Skip to main content

Tumor Angiogenesis, Macrophages, and Cytokines

  • Chapter
Book cover Angiogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 476))

Abstract

Angiogenesis is a multistep program that involves the activation, proliferation, and migration of endothelial cells. In healthy body, except for reproductive cycle or embryogenesis, angiogenesis is strictly regulated by numerous factors to maintain homeostasis. Factors can be divided mainly in two categories, positive regulators and negative regulators. In pathological process like acute inflammation or wound repair, both positive and negative regulators are induced and activated, but quickly the response comes to the reduction. However, in oncogenesis, new vessel formation occurs repeatedly and chronically1-2. In the early stage of tumor progression, the alteration of the balance between positive regulators and negative regulators is limited only in the primary tumor site, but in the late stage/ clinical stage, this alteration is no longer localized in the local foci. Over expression of positive regulators and/or down regulation of negative regulators at systemic level are frequently observed. In this process, not only tumor cells but also various stromal cells such as macrophages, other leukocytes, fibroblasts and endothelial cells are responsible for the explosive induction of positive regulators. It is estimated that continuous interaction between tumor cells and stromal cells in a positive feedback loop enables a ceaseless. In this manuscript, we focused on the importance of stromal cells, particularly monocytic cells, and reviewed the role of cytokines in tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J., 1995, Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1 27–31.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. et al., 1987, Angiogenic factors. Science 235: 442–447.

    Article  PubMed  CAS  Google Scholar 

  3. Gasparini G. et al., 1995, Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool. J. Clin. Oncol. 13: 765–782.

    PubMed  CAS  Google Scholar 

  4. Toi M et al., 1996, Clinical significance of the determination of angiogenic factors. Eur J Cancer. 32A: 2513–2519.

    Article  PubMed  CAS  Google Scholar 

  5. Toi M. et al., 1995, Vascular endothelial growth factor and platelet-derived endothelial cell growth factor are frequently coexpressed in highly vascularized human breast cancer. Clin. Cancer Res. 1:961–964.

    PubMed  CAS  Google Scholar 

  6. Toi M. et al., 1995, Expression of platelet-derived endothelial cell growth factor in human breast cancer. Int. J. Cancer 64: 79–82.

    Article  PubMed  CAS  Google Scholar 

  7. Gasparini G. et al., 1997, Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl. Cancer Inst. 89:139–147.

    Article  PubMed  CAS  Google Scholar 

  8. Linderholmm B. et al., 1998, Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J. Clin. Oncol. 16: 3121–3128.

    Google Scholar 

  9. Eppenberger U. et al., 1998, Markers of tumor angiogenesis and proteolysis independently define high-and low-risk subsets of node-negative breast cancer patients. J.Oncol. 16:3129–3136.

    CAS  Google Scholar 

  10. Ohta Y. et al., 1997, Vascular endothelial growth factor and lymph node metastasis in primary lung cancer. Br. J. Cancer 76: 1041–1045.

    Article  PubMed  CAS  Google Scholar 

  11. Kitadai Y. et al., 1998, Significance of vessel count and vascular endothelial growth factor in human esophageal carcinomas. Clin. Cancer Res. 4: 2195–2200.

    PubMed  CAS  Google Scholar 

  12. Takanami L. et al., 1997, Vascular endothelial growth factor and its receptor correlate with angiogenesis and survival in pulmonary adenocarcinoma. Anticancer Res. 17:2811–2814.

    PubMed  CAS  Google Scholar 

  13. Paley P.J. et al., 1997, Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80:98–106.

    Article  PubMed  CAS  Google Scholar 

  14. Maeda K. eg al., 1996, Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77:858–863.

    Article  PubMed  CAS  Google Scholar 

  15. Crew J.P. et al., 1997, Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res. 57:5281–52855

    PubMed  CAS  Google Scholar 

  16. Sauter E.R. et al., 1999, Vascular endothelial growth factor is a marker of tumor invasion and metastasis in squamous cell carcinomas of the head and neck. Clin. Cancer Res. 5:775–782.

    PubMed  CAS  Google Scholar 

  17. Abdulrauf S.I. et al., 1998, Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J. Neurosurg. 88:513–520.

    Article  PubMed  CAS  Google Scholar 

  18. Bellamy W.T. et al., 1999, Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 59:728–733.

    PubMed  CAS  Google Scholar 

  19. Salven P. et al., 1997, A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood 90: 3167–3172.

    PubMed  CAS  Google Scholar 

  20. Carmehet P. et al., 1998, Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation an tumour angiogenesis. Nature. 394: 485–490.

    Article  Google Scholar 

  21. Maxwell P.H. et al., 1997, Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci.U S A. 94: 8104–8109.

    Article  PubMed  CAS  Google Scholar 

  22. Maxwell P.H. et al., 1999, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks S.E. et al., 1998, Modulation of VEGF production by pH and glucose in retinal Muller cells. Curr. Eye Res. 17: 875–882.

    Article  PubMed  CAS  Google Scholar 

  24. Xiong M. et al., 1998, Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J. Pathol. 153: 587–598.

    Article  PubMed  CAS  Google Scholar 

  25. Satake S. et al., 1998, Up-regulation of vascular endothelial growth factor in response to glucosedeprivation. Cell 90: 161–168.

    CAS  Google Scholar 

  26. Solovey A. et al., 1999, Sickle cell anemia as a possible state of enhanced anti-apoptotic tone: survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells. Blood 93: 3824–3830.

    PubMed  CAS  Google Scholar 

  27. Spyridopoulos I. et al., 1997, Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J. Mol. Cell. Cardiol. 29:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  28. Nor J.E. et al., 1999, Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J Pathol. 154: 375–384.

    Article  PubMed  CAS  Google Scholar 

  29. Kondo S. et al., 1994, bcl-2 gene prevents apoptosis of basic fibroblast growth factor-deprived murine aortic endothelial cells. Exp. Cell Res. 213: 428–432.

    Article  PubMed  CAS  Google Scholar 

  30. Moghaddam K. et al., 1995, Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc. Natl. Acad. Sci. 92: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  31. Miyadera K. et al., 1995, Role of thymidine phosphorylase activity in tthe angiogenic effect of platelet-derived endothelial cell growth factor/ thymidine phosphorylase. Cancer Res. 55: 1687–1690.

    PubMed  CAS  Google Scholar 

  32. Haraguchi M. et al. Angiogenic activity of enzymes. Nature 368, 198, 1994

    Article  PubMed  CAS  Google Scholar 

  33. Moghaddam A. et al., 1995, Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc. Natl. Acad. Sci. 92: 998–1002.

    Article  PubMed  CAS  Google Scholar 

  34. O’Brien T. et al., 1995, Differential angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55: 510–513.

    PubMed  Google Scholar 

  35. Reynolds K. et al., 1994, Association of ovarian malignancy with expression of plateletderived endothelial cell growth factor. J. Natl. Cancer Inst. 86: 1234–1238.

    Article  PubMed  CAS  Google Scholar 

  36. Eda H. et al., 1993, Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5’-deoxy-5-fluorouridine. Cancer Chem. Pharm., 32: 333–338..

    Article  CAS  Google Scholar 

  37. Griffiths L. et al., 1997, The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/ thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res. 57: 570–572.

    PubMed  CAS  Google Scholar 

  38. Nishino I et al., 1999, Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689–692.

    Article  PubMed  CAS  Google Scholar 

  39. Kitazono M. et al., 1998, Prevention of hypoxia-mduced apoptosis by the angiogenic factor thymidine phosphorylase. Biochem. Biophys. Res. Commun. 253: 797–803.

    Article  PubMed  CAS  Google Scholar 

  40. Tanigawa N. et al., 1996, Tumor angiogenesis and expression of thymidine phosphorylase/platelet derived endothelial cell growth factor in human gastric carcinoma. Cancer Lett. 108: 281–290.

    Article  PubMed  CAS  Google Scholar 

  41. Takebayashi Y. et al., 1996, Chinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. J. Natl. Cancer Inst. 88: 1110–1117.

    Article  PubMed  CAS  Google Scholar 

  42. Imazano Y et al., 1997, Correlation between thymidine phosphorylase expression and prognosis in human renal cell carcinoma. J. Clin Oncol. 15: 2570–2578.

    PubMed  CAS  Google Scholar 

  43. Koukourakis M.l. et al., 1998, Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer: impact on tumour neoangiogenesis and survival. Br. J. Cancer 77. 1696–1703.

    Article  PubMed  CAS  Google Scholar 

  44. Takao S. et al., 1998, Expression of thymidine phosphorylase is associated with a poor prognosis in patients with ductal adenocarcinoma of the pancreas. Clin. Cancer Res. 4: 1619–1624.

    PubMed  CAS  Google Scholar 

  45. Toi M. et al., 1997, Co-ordination of the angiogenic factors thymidine phosphorylase and vascular endothelial growth factor in node-negative breast cancer: prognostic implications. Angiogenesis 1: 71–83

    Article  PubMed  CAS  Google Scholar 

  46. Hata K. et al., 1999, Expression of the thymidine phosphorylase gene in epithelial ovarian cancer. Br. J. Cancer 79: 1848–1854.

    Article  PubMed  CAS  Google Scholar 

  47. Fox S.B. et al., 1997, Relationship of elevated tumour thymidine phosphorylase in nodepositive breast carcinomas to the effects of adjuvant CMF. Ann. Oncol. 8: 271–275.

    Article  PubMed  CAS  Google Scholar 

  48. Gasparini G. et al., 1999, Clinical relevance of vascular endothelial growth factor and thymidine phosphorylase in patients with node-positive breast cancer treated with either adjuvant chemotherapy or hormone therapy. Cancer J.Sci. Am. 5:101–111.

    PubMed  CAS  Google Scholar 

  49. Colomer R. et al., 1997, Low levels of basic fibroblast growth (bFGF) are associated with a poor prognosis in human breast carcinoma. Br. J. Cancer 76: 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  50. Thibault A. et al., 19898, A phase II study of 5-aza-2’deoxycytidine (decitabme) in hormone independent metastatic (D2) prostate cancer. Tumor. 84: 87–89.

    Google Scholar 

  51. Brattstrom D. et al., 1998, Basic fibroblast growth factor and vascular endothelial growth factor in sera from non-small cell lung cancer patients. Anticancer Res. 18: 1123–1127.

    PubMed  CAS  Google Scholar 

  52. Bredel M. et al., 1997, Basic fibroblast growth factor expression as a predictor of prognosis in pediatric high-grade gliomas. Clin. Cancer Res 3: 2157–2164.

    PubMed  CAS  Google Scholar 

  53. Mantovani A. 1994, Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokmes. Lab. Invest. 71: 5–16.

    PubMed  CAS  Google Scholar 

  54. Graves, D.T. et al., 1991, Biochem. Pharmacol. 41: 333–337, 1991.

    CAS  Google Scholar 

  55. Oppenheim, J. et al., 1991, Properties of the novel proinflammatory supergene intercrine cytokine family. Annu. Rev. Immunol., 9: 617–621.

    Article  PubMed  CAS  Google Scholar 

  56. Polverini P. et al., 1996, How the extracellular matrix and macrophages contribute to angiogenesis-dependent diseases. Er. J. Cancer. 32A: 2430–2437.

    Article  CAS  Google Scholar 

  57. O’Sullivan C. et al., 1993, Secretion of epidermal growth factor by macrophages associated with breast carcinoma. The Lancet. 342: 148–149.

    Article  Google Scholar 

  58. Falcone D. J. et al., 1993, Transforming growth factor-β1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. J. Cell. Physiol. 155: 595–605.

    Article  PubMed  CAS  Google Scholar 

  59. Roger P. et al., 1994, Cathepsm D Immunostaining in Paraffin-Embedded Breast Cancer Cells and Macrophages. Human Pathol. 25: 863–871.

    Article  CAS  Google Scholar 

  60. Heppner K. et al., 1996, Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am. J. Pathol. 149: 273–282.

    PubMed  CAS  Google Scholar 

  61. Hildenbrand R. et al., 1995, Urokinase and macrophages in tumor angiogenesis. Br. J. Cancer 72: 818–823.

    Article  PubMed  CAS  Google Scholar 

  62. Toi M. et al., 1999, Significance of thymidine phosphorylase as a marker of protumor monocytes in breast cancer. Clin. Can. Res. 5: 1131–1137.

    CAS  Google Scholar 

  63. Ishigaki S. et al., 1999, Significance of membrane type 1 matrix metalloproteinase expression in breast cancer. Jpn. J. Cancer Res. 90: 516–522.

    Article  PubMed  CAS  Google Scholar 

  64. Toi M et al., 1991, Interleuk?n-4 is a potent mitogen for capillary endothelium. Biochem. Biophys. Res. Commun. 174: 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  65. Fukushi J. et al., 1998, Novel biological function of Interleukin-4: Formation of tube-like structure by vascular endothelial cells in vitro and angiogenesis in vivo. Biochem. Biophy. Res. Commu. 250: 444–448.

    Article  CAS  Google Scholar 

  66. Thornhill M.H. et al., 1990, IL-4 Regulates endothelial cell activation by IL-1, tumor nerosis factor, or IFN-γ1. J.Immunol. 145: 865–872.

    PubMed  CAS  Google Scholar 

  67. Wojta J. et al., 1993, Interleukin-4 stimulates Expression of Urokinase-Type-Plasminogen activator in cultured human foreskin microvascular endothelial cells. Blood 81: 3285–3292

    PubMed  CAS  Google Scholar 

  68. Masinovsky B. et al., 1990, IL-4 acts synergistically with IL-lβ to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol. 145: 2886–2898.

    PubMed  CAS  Google Scholar 

  69. Yao L. et al., 1996, Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 1, 184: 81–92.

    Article  PubMed  CAS  Google Scholar 

  70. Kuhn R.et al., 1991, Generation and analysis of interleukin-4 deficient mice. Science 254: 707–710.

    Article  PubMed  CAS  Google Scholar 

  71. Kopf M.et al., 1993, Disruption of the murine IL-4 gene blocks Th2 cytokine responsers. Nature. 362: 245–248.

    Article  PubMed  CAS  Google Scholar 

  72. Saleh M et al., 1999, Effect of in situ retroviral interleukin-4 transfer on established intracranial tumors. J. Natl. Cancer Inst. 91: 438–445.

    Article  PubMed  CAS  Google Scholar 

  73. Volpert O.V. et al., 1998, Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  74. Koch A.E. et al., 1992, Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  75. Hu D.E. et al., 1993, Interlerkin-8 stimulates angiogenesis in rats. Inflammation 17: 135–143.

    Article  PubMed  CAS  Google Scholar 

  76. Singh R.K. et al., 1994, Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 54: 3242–3247.

    PubMed  CAS  Google Scholar 

  77. Luca M. et al., 1997, Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am. J. Pathol. 151: 1105–1113.

    PubMed  CAS  Google Scholar 

  78. Arenberg D.A. et al., 1996, Inhibition of interleukin-8 reduces tumorigencsis of human non-small cell lung cancer in SCID mice. J. Clin. Invst. 97: 2792–2802.

    Article  CAS  Google Scholar 

  79. Galffy G. et al., 1999, Interleukin 8: an autocrine growth factor for malignant mesothelioma. Cancer Res. 59: 367–371.

    PubMed  CAS  Google Scholar 

  80. Kitadai Y. et al., 1998, expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am. J. Pathol. 152: 93–100.

    PubMed  CAS  Google Scholar 

  81. Yoneda J. et al., 1998, Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl. Cancer Inst. 90: 447–454.

    Article  PubMed  CAS  Google Scholar 

  82. Desbaillets I et al., 1997, Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J. Exp. Med. 186: 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  83. Desbaillets I. et al., 1999, Regulation of interleuk?n-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18: 1447–1456.

    Article  PubMed  CAS  Google Scholar 

  84. Richards B.L. et al., 1997, Coexpression of ?nterleukin-8 receptors in head and neck squamous cell carcinoma. Am. J. Surg. 174: 507–512.

    Article  PubMed  CAS  Google Scholar 

  85. Eisma R.J. et al., 1999, Role of angiogenic factors: coexpression of interleukin-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma. Laryngoscope 109: 687–693.

    Article  PubMed  CAS  Google Scholar 

  86. Fiorentino D. F. et al., 1985, Two types of mouse helper T cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170: 2081–2095.

    Article  Google Scholar 

  87. Fiorentino D. F. et al., 1991, IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146: 3444–3451.

    PubMed  CAS  Google Scholar 

  88. Moore K.W. et al., 1993, Interleukin 10. Annu.Rev. Immunol. 11: 165–190.

    Article  PubMed  CAS  Google Scholar 

  89. Hsu D.H. et al., 1990, Expression of IL-10 activity by Epstein-Barr virus protein BCRF1. Science 250: 830–832.

    Article  PubMed  CAS  Google Scholar 

  90. Hsu D.H. et al., 1992, Differencial effects of interleukin-4 and-10 on interleukin-2-induced interferon-γ synthesis and lymphokine-activated killer activity, int. Immunol. 4: 563–569.

    Article  PubMed  CAS  Google Scholar 

  91. Huang S. et al., 1996, Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin. Cancer Res. 2: 1969–1979.

    PubMed  CAS  Google Scholar 

  92. Richter G. et al., 1993, Interleukin 10 transfected into Chinese hamster ovary cells prevents tumor growth and macrophage infiltration. Cancer Res. 53: 4134–4137.

    PubMed  CAS  Google Scholar 

  93. Kundu N. et al., 1997, Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol. 180: 55–61.

    Article  PubMed  CAS  Google Scholar 

  94. Stearns M.E. et al., 1999, Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloprotemase (MMP)-2/MMP-9 secretion. Clin. Cancer Res. 5: 189–196.

    PubMed  CAS  Google Scholar 

  95. Stearns M.E. et al., 1999, Role of interleukin 10 and transforming growth factor βl in the angiogenesis and metastasis of human prostate primary tumor lines from orthoropic implantsi in severe combined immunodeficiency mice. Clin. Cancer Res. 5: 711–720. 3.

    PubMed  CAS  Google Scholar 

  96. Watanabe M. et al., 1997, Regulation of local host-mediated anti-tumor mechanisms by cytokines (Direct and indirect effects on leukocyte recruiment and an angiogenesis. Am. J. Pathol. 150: 1869–1881.

    PubMed  CAS  Google Scholar 

  97. Dias S. et al., 1998, IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int. J. Cancer 78: 361–365.

    Article  PubMed  CAS  Google Scholar 

  98. Strieter R.M. et al., 1995, Interferon γ-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem. Biophy. Res. Commu. 210: 51–57.

    Article  CAS  Google Scholar 

  99. Arenberg D.A. et al., 1996, Interferon-γ-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med. 184: 981–992.

    Article  PubMed  CAS  Google Scholar 

  100. Oppenheim J. J. et al., 1991, Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol. 9: 617–648

    Article  PubMed  CAS  Google Scholar 

  101. Sarris, A.H. et al., 1993, Human interferon-inducible protein 10: expression and purification of recombinant protein demonstrate inhibition of early human hematopoietic progenitors. J. Exp. Med. 178: 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  102. Sarris, A.H. et al., 1995, Cytokine loops involving interferon-γ and IP-10, a cytokine chenotactic for CD4+ lymphocytes: an explanation for the epidermotropism of cutaneus T-cell lymphoma? Blood 86: 651–658.

    PubMed  CAS  Google Scholar 

  103. Valente A.J. et al., 1988, Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry 27: 4162–4168

    Article  PubMed  CAS  Google Scholar 

  104. Yosimura T. et al., 1990, Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J. Immunol. 145: 292–297

    Google Scholar 

  105. Gerszten R.E. et al., 1999, MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 22: 398: 718–723.

    Google Scholar 

  106. Bian Z.M. et al., 1999, IL-4 potentiates IL-1 beta-and TNF-alpha-srimulated IL-8 and MCP-1 protein production in human retinal pigment epithelial cells. Curr. Eye. Res. 18: 349–357.

    Article  PubMed  CAS  Google Scholar 

  107. Koyama S. et al., 1999, Monocyte chemotactic factors released from type II pneumocyte-like cells in response to TNF-alpha and IL-1 alpha. Eur. Respir. J. 13: 820–828.

    Article  PubMed  CAS  Google Scholar 

  108. Biswas P. et al.,1999, Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91: 258–265.

    Google Scholar 

  109. Marumo T. et al., 1999, Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48: 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  110. Negus R.P. et al., 1995, The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J. Clin. Invest. 95: 2391–2396.

    Article  PubMed  CAS  Google Scholar 

  111. Altenburg A. et al., 1999, CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. J. Immunol. 162: 4140–4147.

    PubMed  CAS  Google Scholar 

  112. Amann B. et al., 1998, Urinary levels of monocyte chemo-attractant protein-1 correlate with tumour stage and grade in patients with bladder cancer. Br. J. Urol. 82: 118–121.

    Article  PubMed  CAS  Google Scholar 

  113. Gabrilovich D.I. et al., 1996, Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2: 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  114. Melder R.J. et al., 1996, During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2: 992–997

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bando, H., Toi, M. (2000). Tumor Angiogenesis, Macrophages, and Cytokines. In: Maragoudakis, M.E. (eds) Angiogenesis. Advances in Experimental Medicine and Biology, vol 476. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4221-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4221-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6895-3

  • Online ISBN: 978-1-4615-4221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics