Skip to main content

Sensitivity of Different Vascular Beds in the Eye to Neovascularization and Blood-Retinal Barrier Breakdown in VEGF Transgenic Mice

  • Chapter
Angiogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 476))

Abstract

Neovascularization (NV) causes visual deficits in ocular disorders such as diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. An understanding of the angiogenic factors promoting this abnormal vascular growth is necessary to devise a therapeutic approach to inhibit NV. One factor known to promote NV is vascular endothelial growth factor (VEGF), which can also induce a breakdown of the blood-retinal barrier (BRB) leading to macular edema, another major cause of visual loss in a variety of ocular disorders. To investigate the role of VEGF on ocular NV, transgenic mice have been produced that overexpress VEGF in the photoreceptors under control of the rhodopsin promoter. Eyes from these mice and from littermates not expressing the transgene were examined using immunohistochemistry, griffonia simplicifolia isolectin-B4 (GSA) staining to clearly visualize vessels, and electron microscopy. Levels of transgene expression were determined by the polymerase chain reaction. In normal mice, retinal vessels are organized into a superficial and a deep capillary bed with some vessels forming a shunt between both beds. In a transgenic line of mice that overexpresses VEGF (V-6), NV originates from the deep capillary bed at about postnatal day 10 (P10) and extends through the photoreceptor layer to form vascular complexes in the subretinal space with BRB breakdown occurring only in the area of NV. The superficial capillary bed and the choroidal vasculature are unaffected. In another line of transgenic mice with a higher expression rate of VEGF (V-24), photoreceptor degeneration begins at P7-8, soon after the onset of transgene expression, without widespread NV, as was observed in V-6 mice. In conclusion, overexpression of VEGF in transgenic mice is sufficient to cause retinal NV, but only the deep capillary bed is responsive. Increasing the expression of VEGF does not necessarily increase the amount of NV. A better understanding of the specific factors and conditions that result in a particular pattern of ocular NV may provide clues regarding the pathogenesis of ocular neovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamis, A.P., Miller, J.W., Bernal, M.-T., D’Amico, D.J., Folkman J., Yeo, T.-K., and Yeo, K.-T., 1994, Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Amer. J. Ophthalmol. 118: 445–450.

    CAS  Google Scholar 

  • Aiello, L.P., Avery, R.L, Arrigg, P.G., Keyt, B.A., Jampel, H.D., Shah, ST., Pasquale, L.R., Thieme H., Iwamoto, M.A., Park, J.E., Nguyen, H.V., Aiello, L.M., Ferrara N., and King, G L., 1994, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New Engl. J. Med. 331: 1480–1487.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Av P., Crofford, L.J., Wilder, R.L. Hla, T., 1995, Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukm-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett. 372: 82–87.

    Article  Google Scholar 

  • Benjamin, L.E. and Keshet, E., 1997, Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors-induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl. Acad. Sci. USA 94: 8761–8766.

    Article  PubMed  CAS  Google Scholar 

  • Clauss M., Weich H., Breier, G. Knies U., Rockl W., Waltenberger J., and Risau, W., 1996, The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271: 17629–17634.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, D.T., Heuvelman, D.M., Nelson R., Olander, J.V., Eppley, B.L., Delfino, J.J., Siegel, N.R., Leimgruber, R.M., and Feder, J., 1989a, Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest. 84: 1470–1478.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, D.T., Olander, J.V., Heuvelman D., Nelson R., Monsell R., Siegel N., Haymore, B.L., Leimgruber R., and Feder, J., 1989b, Human vascular permeability factor. J. Biol. Chem. 264:20017–20024.

    PubMed  CAS  Google Scholar 

  • Goldberg, M.A. and Schneider, T.J., 1994, Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem. 269:4355–4359.

    PubMed  CAS  Google Scholar 

  • Harada S., Nagy, J.A., Sullivan, K.A., Thomas, K.A., Endo N., Rodan, G.A., and Rodan, S.B., 1994, Induction of vascular endothelial growth factor expression by prostaglandin E2 and El in osteoblasts. J. Clin. Invest. 93: 2490–2496.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto E., Kage K., Ogita T., Nakaoka T., Matsuoka R., and Kira, Y., 1994, Adenosine as an endogenous mediator of hypoxia for induction of vascular endothelial growth factor mRNA in U-937 cells. Biochem. Biophys. Res. Comm. 204: 318–324.

    Article  CAS  Google Scholar 

  • Jackson, J.R., Minton, J.A., Ho, M.L., Wei N., and Winkler, J.D., 1997, Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin lbeta. J. Rheumatol. 24: 1253–1259.

    PubMed  CAS  Google Scholar 

  • Kondo S., Asano M., and Suzuki, H., 1993, Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem. Biophys. Res. Commun. 194: 1234–1241.

    Article  CAS  Google Scholar 

  • Leung, D.W., Cachianes G., Kuang, W.-J., Goeddel, D.V., and Ferrara, N., 1989, Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A.P., Levy, N.S., Wegner S., and Goldberg, M.A., 1995, Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270: 13333–13340.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Perrella, M.A., Tsai, J.-C., Yet, S.F., Hsieh, CM., Yoshizuma M., Patterson, C, Endege, W.O., Schlegel R., and Lee, M.E., Induction of vascular endothelial growth factor gene expression by interleukin-1β in rat aortic smooth muscle cells. J. Biol. Chem. 279:308–312.

    Google Scholar 

  • Lu M., Perez, V.L., Ma N., Miyamoto K., Peng, H.-B., Liao, and Adamis, A.P., 1999, VEGF increases retinal vascular ICAM-1 expression in vivo. Invest. Ophthalmol. Vis. Sci. 40: 1808–1812.

    PubMed  CAS  Google Scholar 

  • Luna, J.D., Chan, C.-C, Derevjanik, N.L., Mahlow J., Chiu, C, Peng B., Tobe T., Campochiaro, P.A., and Vinores, S.A., 1997, Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: Comparison with vascular endothelial growth factor, tumor necrosis factor α, and interleukin-lβ-mediated breakdown. J. Neurosci. Res. 49: 268–280.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, M.K., Merges, C, McLeod, D.S., and Lutty, G.A., 1997, Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38: 2729–2741.

    CAS  Google Scholar 

  • Melder, R.J., Koenig, G.C., Witwer, B.P., Safabakhsh N., Munn, L.L., and Jain, R.K., (1996), During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med. 2: 992–997.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.W., Adamis, A.P., Shima, D.T., D’Amore, P.A., Moulton, R.S., O’Reilly, M.S., Folkman J., Dvorak, H.F., Brown, L.F., Berse B., Yeo, T.-K., and Yeo, K.-T., 1994, Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Amer. J. Pathol. 145: 574–584.

    CAS  Google Scholar 

  • Mmchenko A., Bauer T., Salceda S., and Caro, J., 1994a, Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Invest. 71: 374–379.

    Google Scholar 

  • Minchenko A., Salceda, S.. Bauer T., and Caro, J., 1994b, Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell. Mol. Biol. Res. 40: 35–39.

    PubMed  CAS  Google Scholar 

  • Murata T., Nakagawa K., Ishibashi T., Ohnishi Y., Inomata H., and Sueishi, K., 1995, Temporal and spatial correlation between VEGF expression and retinal angiogenesis in neonatal rats. Invest. Ophthalmol. Vis. Sci. 36: S895.

    Google Scholar 

  • Murata T., Nakagawa K., Khalil A., Ishibashi T., Inomata H., and Sueishi, K., 1996, The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab. Invest. 74: 819–825.

    PubMed  CAS  Google Scholar 

  • Ozaki H., Hayashi H., Vinores, S.A., Moromizato Y., Campochiaro, P.A., and Oshima, K., 1997, Intravitreal sustained release of VEGF causes neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp. Eye Res. 64: 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Penn, J.S., Tolman, B.L., and Henry, M.M., 1994, Oxygen-induced retinopathy in the rat; relationship of retinal nonperfusion to subsequent neovascularization. Invest. Ophthalmol. Vis. Sci. 35: 3429–3435.

    PubMed  CAS  Google Scholar 

  • Penn, J.S., Tolman, B.L., and Lowery, L.A., 1993, Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest. Ophthalmol. Vis. Sci. 34: 576–585.

    PubMed  CAS  Google Scholar 

  • Pierce, E.A., Avery, R.L., Foley, E.D., Aiello, L.P., and Smith, L.E.H., 1995, Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA 92: 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Plate, K.H., Breier G., Welch, H.A., and Risau, W., 1992, Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359: 845–848.

    Article  PubMed  CAS  Google Scholar 

  • Provias J., Claffey K., delAguila L., Lau N., Feldkamp M., and Guha, A., 1997, Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurg. 40: 1016–1026.

    Article  CAS  Google Scholar 

  • Ristimaki A., Narko K., Enholm B., Joukov V., and Alitalo, K., 1998, Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273: 8413–8418.

    Article  PubMed  CAS  Google Scholar 

  • Ryuto M., Ono M., Izumi H., Yoshida S., Weich, H.A., Kohno K., and Kuwano, M, 1996, Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J. Biol. 271: 28220–28228.

    CAS  Google Scholar 

  • Sahagun, G, Moore, S.A., Fabry Z., Shelper, R.L., and Hart, M.N., 1989, Purification of murine endothelial cell cultures by flow cytometry using fluorescein-labeled Griffonia simplicifolia agglutinin. Amer. J. Pathol. 134: 1227–1232.

    CAS  Google Scholar 

  • Salven P., Heikkilä, P., and Joensuu, H., 1997, Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Brit. J. Cane. 76: 930–934.

    Article  CAS  Google Scholar 

  • Samaniego F., Markham, P.D., Gendelman R., Watanabe Y., Kao V., Kowalski K., Sonnabend, J.A., Pintus A., Gallo, R.C., and Ensoli, B., 1998, Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Amer. J. Pathol. 152: 1433–1443.

    CAS  Google Scholar 

  • Schuite, B.A. and Spicer, S.S., 1983, Histochemical evaluation of mouse and rat kidneys with lectin-horseradish peroxidase conjugates. Amer. J. Anat. 168: 345–362.

    Article  Google Scholar 

  • Senger, D.R., Van DeWater L., Brown, L.F., Nagy, J.A., Yeo, K.-T., Yeo, T.-K., Berse B., Jackman, R.W., Dvorak, A.M., and Dvorak, H.F., 1993, Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metast. Rev. 12: 303–324.

    Article  CAS  Google Scholar 

  • Shalaby F., Rossant J., Yamaguchi, T.P., Gertsenstein M., Wu, X.-F., Breitman, M.L., and Schuh, A.C., 1995, Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D., Itin, A. Soffer D., and Keshet, E., 1992, Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Stone J., Itin A., Alon T., Pe’er J., Gnessin H., Chan-Ling T., and Keshet, E., 1995, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15: 4738–4747.

    PubMed  CAS  Google Scholar 

  • Takano S., Yoshii Y., Kondo S., Suzuki H., Maruno T., Shirai S., and Nose, T., 1996, Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cane. Res. 56: 2185–2190.

    CAS  Google Scholar 

  • Tobe T., Okamoto N., Vinores, M.A., Derevjanik, N.L., Vinores, S.A., Zack, D.J., and Campochiaro, P. A., 1998, Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest. Ophthalmol. Vis. Sci. 39: 180–188.

    PubMed  CAS  Google Scholar 

  • Tolentino, M.J., Miller, J.W., Gragoudas, E.S., Jakobiec, F.A., Flynn E., Chatzistefanou K., Ferrara N., and Adamns, A.P., 1996, Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103: 1820–1828.

    PubMed  CAS  Google Scholar 

  • Tsai, J.-C, Goldman, C.K., and Gillespie, G.Y., 1995, Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J. Neurosurg. 82: 864–873.

    Article  PubMed  CAS  Google Scholar 

  • Vinores, S.A., Chan, C.-C, Vinores, M.A., Matteson, D.M., Chen, Y.-S., Klein, D.A., Shi A., Ozaki H., and Campochiaro, P.A., 1998, Increased vascular endothelial growth factor (VEGF) and transforming growth factor β (TGFβ) in experimental autoimmune uveoretinitis: upregulation of VEGF without neovascularization. J. Neuroimmunol. 89: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Vinores, S.A., Küchle M., Mahlow J., Chiu, C, Green, W.R., and Campochiaro, P.A., 1995, Blood-retinal barrier breakdown in eyes with ocular melanoma: a potential role for vascular endothelial growth factor. Amer. J. Pathol. 147: 1289–1297.

    CAS  Google Scholar 

  • Vinores, S.A., Youssri, A.I., Luna, J.D., Chen, Y.-S., Bhargave S., Vinores, M.A., Schoenfeld, C.-L., Peng B., Chan, C.-C, LaRochelle W., Green, W.R., and Campochiaro, P.A., 1997, Upregulation of vascular endothelial growth factor in ischemic and non-ischemic human and experimental retinal disease. Histol. Histopathol. 12: 99–109.

    CAS  Google Scholar 

  • Westphal, J.R., van’t Hullenaar, R.G., van der Laak, J.A., Cornelissen, I.M., Schalkwijk, L.J., van Muijen, G.N., Wesseling P., de Wilde, P.C., Ruiter, D.J., and de Waal, R.M., 1997, Vascular density in melanoma xenografts correlates with vascular permeability factor expression but not with metastatic potential. Brit. J. Cane. 76: 561–570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinores, S.A., Derevjanik, N.L., Vinores, M.A., Okamoto, N., Campochiaro, P.A. (2000). Sensitivity of Different Vascular Beds in the Eye to Neovascularization and Blood-Retinal Barrier Breakdown in VEGF Transgenic Mice. In: Maragoudakis, M.E. (eds) Angiogenesis. Advances in Experimental Medicine and Biology, vol 476. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4221-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4221-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6895-3

  • Online ISBN: 978-1-4615-4221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics