Skip to main content

Part of the book series: Mathematical and Computational Chemistry ((MACC))

Abstract

One of the central problems of solid state physics and quantum chemistry is to find an accurate and computationally affordable method for the description of electronic correlation. The most accurate methods available today, e.g. the configuration interaction (CI) method [1] or the coupled cluster (CC) method [1], are computationally too expensive to be applied to large systems. Quantum Monte Carlo approaches [2] require considerable human input and the computational cost of reducing the statistical error to an acceptable level for large systems, particularly those with deep core electrons, is considerable. On the other hand, straightforward implementations of the density functional formalism [3] have only a cubic scaling with respect to system size and consequently have been applied to systems with more than 100 atoms. Recent work on O(N) methods [4] will lead to a linear scaling with respect to system size that will allow for the application of density functional schemes to systems with thousands of atoms. This is the main reason for the popularity of density functional methods even though all practical density functional schemes make an approximation for the unknown exchange-correlation energy functional that cannot be systematically improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Szabo and N. Ostlund Modem Quantum Chemistry, McGraw Hill, New York (1982).

    Google Scholar 

  2. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, to be published in vol. 72 of Quantum Monte Carlo Methods in Physics and Chemistry, Nato Science Series C: Mathematical and Physical Sciences, Vol. 525, M. P. Nightingale and C. J. Umrigar (eds.), Kluwer Academic, Dordrecht.

    Google Scholar 

  3. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989); R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer-Verlag (1990).

    Google Scholar 

  4. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

    Article  CAS  Google Scholar 

  5. S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866 (1998).

    Article  CAS  Google Scholar 

  6. M. Levy and J. P. Perdew, Phys. Rev.A32, 2010 (1985).

    Google Scholar 

  7. M. Levy in Density Matrices and Density Functionals, R. Erdahl and V. H. Smith (eds.), Reidel (1987).

    Google Scholar 

  8. J. Linderberg and H. Shull, J. Mol. Spect. 5, 1 (1960).

    Article  CAS  Google Scholar 

  9. E.A. Hylleraas, Z. Phys. 65, 209 (1930).

    Article  CAS  Google Scholar 

  10. J.P. Perdew, E. R. McMullen, and A. Zunger, Phys. Rev.A 23, 13105 (1981).

    Google Scholar 

  11. A. Savin, in Recent Advances in Density Functional Methods, D. P. Chong, (ed.), World Scientific, Singapore (1996); B. Miehlich, H. Stoll, and A. Savin, Mol. Phys. 91, 527 (1997); T. Leininger, H. Stoll, H. Werner, and A. Savin, Chem. Phys. Lett 275, 151 (1997); A. Savin and H.-J. Flad, Int. J. Quant Chem. 56, 327 (1995).

    Google Scholar 

  12. S. H. Vosko, L. Wilk, and M. Nussair, Can. J. Phys. 58, 1200 (1980); J. P. Perdew and Y. Wang, Phys. Rev. B45, 13244 (1992).

    Article  CAS  Google Scholar 

  13. A. D. Becke, Phys. Rev.A 38, 3098 (1988); C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988); B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1988). Other popular GGA’s include: J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986); J. P. Perdew, Phys. Rev. B 33, 8822 (1986); erratum ibid. 34, 7406 (1986); J. P. Perdew in Electronic structure of solids’ 91, P. Ziesche and H. Eschrig (eds.), Akademie Verlag, Berlin (1991); J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996).

    Google Scholar 

  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  15. E. R. Davidson Reduced Density Matrices in Quantum Chemistry, Academic Press, New York (1976).

    Google Scholar 

  16. Density Matrices and Density Functional R. Erdahl and V. H. Smith (eds.), Reidel (1987).

    Google Scholar 

  17. GAUSSIAN 94, Revision B.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.

    Google Scholar 

  18. J. Perez-Jorda and A. D. Becke, Chem. Phys. Lett 233, 134 (1995); C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  CAS  Google Scholar 

  19. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

    Article  CAS  Google Scholar 

  20. R. A. Donelly and R. G. Parr, J. Chem. Phys. 69, 4431 (1978); S. M. Valone, J. Chem. Phys. 73, 1344, 4653 (1980); G. Zumbach and K. Maschke, J. Chem. Phys. 82, 5604 (1985); M. Nooijen, J. Chem. Phys. 111, 8365 (1999).

    Article  Google Scholar 

  21. A. Savin, Phys. Rev.A 52, R1805 (1995), M. Levy and A. Görling, Phys. Rev. A 52, R1808 (1995).

    Google Scholar 

  22. A. E. Carlsson, Phys. Rev.B 56, 12058 (1997).

    Google Scholar 

  23. W. Kutzelnigg, Theor. Chim. Acta 1, 327 (1963).

    Article  CAS  Google Scholar 

  24. The orbitals are coupled by the exchange operator and consequently they have the same asymptotic decay. In the case of the coupling being zero for symmetry reasons, the exponents for the different symmetry classes are different. This was shown for Hartree-Fock orbitals by N. Handy, M. Marron, and H. Silverstone, Phys.Rev. 180, 45 (1969) and for natural orbitals by M. M. Morrel, R. G. Parr, and M. Levy, J. Chem. Phys. 62, 549 (1975) and R.G. Parr and M. Levy, J. Chem. Phys. 64, 2707 (1976).

    Google Scholar 

  25. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982); M. Levy, J. P. Perdew, and V. Sahni Phys. Rev.B 30, 2745 (1984). U. von Barth in Electronic Structure of Complex Systems, P. Phariseau and W. M. Temmerman (eds.), NATO, ASI Series B 113 (1984).

    Article  CAS  Google Scholar 

  26. B. Farid, V. Heine, G. E. Engel, and I. J. Robertson, Phys. Rev. B 48, 11602 (1993).

    Google Scholar 

  27. J. C. Slater, Phys. Rev. 81, 385 (1951).

    Article  CAS  Google Scholar 

  28. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

    Article  Google Scholar 

  29. G. Cs’anyi and T. Arias, to be published in Phys. Rev.B 61.

    Google Scholar 

  30. A. Müller, Phys. Lett.A 105, 446 (1984).

    Google Scholar 

  31. A. Holas, Phys. Rev.A 59, 3454 (1999).

    Google Scholar 

  32. J. Cioslowski and K. Pernal, J. Chem. Phys. 111, 3396 (1999).

    Article  CAS  Google Scholar 

  33. We thank A. J. Coleman for suggesting this calculation to us.

    Google Scholar 

  34. N. Marzari, D. Vanderbilt, and M. C. Payne, Phys. Rev. Lett. 79, 1337 (1997).

    Article  CAS  Google Scholar 

  35. S. Goedecker and C. J. Umrigar, Phys. Rev.A 55, 1765 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goedecker, S., Umrigar, C.J. (2000). Natural Orbital Functional Theory. In: Cioslowski, J. (eds) Many-Electron Densities and Reduced Density Matrices. Mathematical and Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4211-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4211-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6890-8

  • Online ISBN: 978-1-4615-4211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics