Skip to main content

Arabinogalactan-Proteins and Cell Development in Roots and Somatic Embryos

  • Chapter
Cell and Developmental Biology of Arabinogalactan-Proteins

Abstract

The cellular basis of plant development and the need for cell-to-cell interactions to direct the differentiation of cells is well established. However, our understanding of the molecular mechanisms of cell-to-cell interactions within a developing plant organ is limited. The occurrence of the structurally complex class of arabinogalactan-protein (AGP) proteoglycans at the surface of all plant cells has led to much speculation on their function(s) during development and their possible involvement in interactions between cells (Clarke et al 1979, Fincher et al 1983, Basile and Basile 1993, Knox 1995, Kreuger and van Holst 1996, Du et al 1996, Nothnagel 1997, Schultz et al 1998, Pennell 1998). Structural aspects of the complex carbohydrates of AGPs, the variability and diversity of the protein core and details of their location and attachment at plasma membranes and cell walls are discussed elsewhere (Clarke et al 1979, Fincher et al 1983, Du et al 1996, Nothnagel 1997, Schultz et al 1998). The biochemical complexity of AGPs, their heterogeneity and their range of physical properties have led to suggestions that they may function as lubricants, adhesion molecules or nutrients. It has also been proposed that they in some way encode information at cell surfaces that is utilized during development. Given such apparent complexity, several diverse experimental approaches to AGP function are applicable and useful. These varied approaches have begun to focus attention on AGPs in relation to particular cellular processes. The AGPs are now implicated in the three fundamental cellular processes that are coordinated to produce the plant body: cell proliferation, cell expansion and cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basile, D. V., and Basile, M. R., 1993, The role and control of the place-dependent suppression of cell division in plant morphogenesis and phylogeny, Mem. Torrey Bot. Club 25: 63–84.

    Google Scholar 

  • Baskin, T. I., Betzner, A. S., Hoggart, R., Cork, A., and Williamson, R. E., 1992, Root morphology mutants in Arabidopsis thaliana, Aust. J. Plant Physiol. 19: 427–437.

    Article  Google Scholar 

  • Casero, P. J., Casimiro, I., and Lloret, P. G., 1996, Pericycle proliferation pattern during the lateral root initiation in adventitious roots of Allium cepa, Protoplasma 191: 136–147.

    Article  Google Scholar 

  • Casero, P. J., Casimiro, I., and Knox, J. P., 1998, Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species, Planta 204: 252–259.

    Article  CAS  Google Scholar 

  • Clarke, A. E., Anderson, R. L., and Stone, B. A., 1979, Form and function of arabinogalactans and arabinogalactan-proteins, Phytochemistry 18: 521–540.

    Article  CAS  Google Scholar 

  • Ding, L., and Zhu, J-K., 1997, A role for arabinogalactan-proteins in root epidermal cell expansion, Planta 203: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, L., Linstead, P., and Roberts, K., 1995, An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the Arabidopsis root, Protoplasma 189: 149–155.

    Article  CAS  Google Scholar 

  • Du, H., Clarke, A. E., and Bacic, A., 1996, Arabinogalactan-proteins: a class of extracellular proteoglycans involved in plant growth and development, Trends Cell Biol. 6: 411–414.

    Article  PubMed  CAS  Google Scholar 

  • Fincher, G. B., Stone, B. A., and Clarke, A. E., 1983, Arabinogalactan-proteins: structure, biosynthesis and function, Annu. Rev. Plant Physiol. 34: 47–70.

    Article  CAS  Google Scholar 

  • Guillon, F., and Thibault, J-F., 1989, Methylation analysis and mild acid hydrolysis of the “hairy” fragments of sugar beet pectins, Carbohyd. Res. 190: 85–96.

    Article  CAS  Google Scholar 

  • Jones, L., Seymour, G. B., and Knox, J. P., 1997, Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-D-galactan, Plant Physiol. 113: 1405–1412.

    PubMed  CAS  Google Scholar 

  • Kikuchi, S., Ohinata, A., Tsumuraya, Y., Hashimoto, Y., Kaneko, Y., and Matsushima, H., 1993, Production and characterization of antibodies to the β(1→6)-galactotetrasyl group and their interactions with arabinogalactan-proteins, Planta 190: 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., and Chua, N. H., 1998, The Arabidopsis DIMINUTO/DWARFI gene encodes a protein involved in steroid synthesis, Plant Cell 10: 1677–1690.

    PubMed  CAS  Google Scholar 

  • Knox, J. P., 1995, Developmentally-regulated proteoglycans and glycoproteins of the plant cell surface, FASEB J. 9: 1004–1012.

    PubMed  CAS  Google Scholar 

  • Knox, J. P., 1997, The use of antibodies to study the architecture and developmental regulation of plant cell walls, Int. Rev. Cytol. 171: 79–120.

    Article  PubMed  CAS  Google Scholar 

  • Knox, J. P., Day, S., and Roberts, K., 1989, A set of cell surface glycoproteins forms a marker of cell position, but not cell type, in the root apical meristem of Daucus carota L., Development 106:47–56.

    CAS  Google Scholar 

  • Knox, J. P., Linstead, P. J., Peart, J., Cooper, C., and Roberts, K., 1991, Developmentally-regulated epitopes of cell surface arabinogalactan-proteins and their relation to root tissue pattern formation, Plant J. 1: 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Kreuger, M., and van Holst, G.-J., 1995, Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L., Planta 197: 135–141.

    Article  CAS  Google Scholar 

  • Kreuger, M., and van Holst, G.-J., 1996, Arabinogalactan-proteins and plant differentiation, Plant Mol. Biol. 30: 1077–1086.

    Article  PubMed  CAS  Google Scholar 

  • Langan, K. J., and Nothnagel, E. A., 1997, Cell surface arabinogalactan-proteins and their relation to cell proliferation and viability, Protoplasma 196: 87–98.

    Article  CAS  Google Scholar 

  • Laurenzio, L. D., Wysocka-Diller, J., Malamy, J. E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M. G., Feldmann, and Benfy, P. N., 1996, The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root, Cell 86: 423–433.

    Article  PubMed  Google Scholar 

  • McCabe, P. F., Valentine, T. A., Forsberg, L. S., and Penneil, R. I., 1997, Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot, Plant Cell 9: 2225–2241.

    PubMed  CAS  Google Scholar 

  • Nothnagel, E. A., 1997, Proteoglycans and related components in plant cells, Int. Rev. Cytol. 174: 195–291.

    Article  PubMed  CAS  Google Scholar 

  • Pennell, R. I., 1998, Cell walls: structures and signals, Curr. Opin. Plant Biol. 1: 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., and Roberts, K., 1991, Developmental regulation of a plasma membrane arabinogalactan-protein epitope is oilseed rape flowers, Plant Cell 3: 1317–1326.

    PubMed  CAS  Google Scholar 

  • Pritchard, J., 1994, The control of cell expansion in roots, New Phytol. 127: 3–26.

    Article  CAS  Google Scholar 

  • Rae, A. L., Perotto, S., Knox, J. P., Kannenberg, E. L., and Brewin, N. J., 1991, Expression of extracellular glycoproteins in the uninfected cells of developing pea nodule tissue, Mol. Plant Micr. Interact. 4: 563–570.

    Article  CAS  Google Scholar 

  • Renard, C. M. G. C., Voragen, A. G. J., Tibault, J.-F., and Pilnik, W., 1991, Studies on apple protopectin V: structural studies on enzymatically extracted pectins, Carbohyd. Polymers 16: 137–154.

    Article  CAS  Google Scholar 

  • Roy, S., Jauh, G. Y., Hepler, P. K., and Lord, E. M., 1998, Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube, Planta 204: 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Šamaj, J., Baluska, F., and Volkmann, D., 1998, Cell-specific expression of two arabinogalactan protein epitopes recognized by monoclonal antibodies JIM8 and JIM13 in maize roots, Protoplasma 204: 1–12.

    Article  Google Scholar 

  • Schiavone, F. M., and Racusen, R. H., 1990, Microsurgery reveals regional capabilities for pattern re-establishment in somatic carrot embryos, Dev. Biol. 141: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, C., Gilson, P., Oxley, D., Youl, J., and Bacic, A., 1998, GPI-anchors on arabinogalactan-proteins: implications for signalling in plants, Trends Plant Sci. 3: 426–431.

    Article  Google Scholar 

  • Serpe, M. D., and Nothnagel, E. A., 1994, Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation, Planta 193: 542–550.

    Article  CAS  Google Scholar 

  • Smallwood, M., Yates, E. A., Willats, W. G. T., Martin, H., and Knox, J. P., 1996, Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot, Planta 198: 452–459.

    Article  CAS  Google Scholar 

  • Stacey, N. J., Roberts, K., and Knox, J. P., 1990, Patterns of expression of the JIM4 arabinogalactan protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L., Planta 180: 285–292.

    Article  CAS  Google Scholar 

  • Takahashi, T., Gasch, A., Nishizawa, N., and Chua, N.-H., 1995, The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation, Genes Dev. 9: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H. J. M., and Knox, J. P., 1998, Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding β-glucosyl Yariv reagent, Planta 205: 32–38.

    Article  CAS  Google Scholar 

  • Toonen, M. A. J., Schmidt, E. D. L., Hendriks, T., Verhoeven, H. A., Van Kammen, A., and de Vries, S. C., 1996, Expression of the JIM8 cell wall epitope in carrot somatic embryogenesis, Planta 200: 167–173.

    Article  CAS  Google Scholar 

  • Torres-Ruiz, R. A., Lohner, A., and Jürgens, G., 1996, The GURKE gene is required for normal organization of the apical region in the Arabidopsis embryo, Plant J. 10: 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Triplett, B. A., and Timpa, J. D., 1997, β-Glucosyl and α-galactosyl Yariv reagents bind to cellulose and other glucans, J. Agric. Food. Chem. 45: 4650–4654.

    Article  CAS  Google Scholar 

  • Valdor, J. F., and Mackie, W., 1997, Synthesis of a trisaccharide repeating unit related to arabinogalactan-protein (AGP) polysaccharides, J. Carbohyd. Chem. 16: 429–440.

    Article  CAS  Google Scholar 

  • Vicré, M., Jauneau, A., Knox, J. P., and Driouich A., 1998, Immunolocalization of β(1→4)-and β(1→6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax root tissues, Protoplasma 203: 26–34.

    Article  Google Scholar 

  • Willats, W. G. T., and Knox, J. P., 1996, A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana, Plant J. 9: 919–925.

    CAS  Google Scholar 

  • Willats, W. G. T., Marcus, S. E., and Knox J. P., 1998, Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan, Carbohyd. Res. 308: 149–152.

    Article  CAS  Google Scholar 

  • Yates, E. A., Valdor, J-F, Haslam, S. M., Morris, H. R., Dell, A., Mackie, W., and Knox, J. P., 1996, Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies, Glycobiology 6: 131–139.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steele-King, C.G., Willats, W.G.T., Paul Knox, J. (2000). Arabinogalactan-Proteins and Cell Development in Roots and Somatic Embryos. In: Nothnagel, E.A., Bacic, A., Clarke, A.E. (eds) Cell and Developmental Biology of Arabinogalactan-Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4207-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4207-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6888-5

  • Online ISBN: 978-1-4615-4207-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics